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This report describes the methodology employed by the Quantum Resource Estimator

(QuRE) toolbox to quantify the resources needed to run quantum algorithms on quan-
tum computers with realistic properties. The QuRE toolbox estimates a number of

quantities including the number of physical qubits required to run a specified quantum

algorithm, the execution time on each of the specified physical technologies, the proba-
bility of success of the computation, as well as physical gate counts with a breakdown by

gate type. Estimates are performed for error-correcting codes representing codes from
both the concatenated and topological code families. Our work, which provides these

resource estimates for a cross product of seven quantum algorithms, six physical ma-

chine descriptions, several quantum control protocols, and four error-correcting codes,
represents the most comprehensive resource estimation effort in the field of quantum

computation to date.

1 Introduction

Estimating the running time, number of qubits and other resources needed by realistic models

of quantum computers is the first necessary step to reducing these resource requirements. This

report describes our Quantum Resource Estimator (QuRE) toolbox which we used to calculate

resource estimates for a cross product of several quantum algorithms, quantum technologies,

and error-correction techniques. The focus of this work is on the estimation methodology,

overhead caused by error correction, and the software tools that we developed. Our toolbox

simulates error correction with the Steane code [1,2], Bacon-Shor code, Knill’s post-selection

scheme, and surface code, representing codes from both the concatenated and topological

error-correcting code families.

The QuRE toolbox is implemented as a suite of Octave scripts. The inputs for the QuRE

toolbox are the description of the physical properties of the quantum computer (such as

gate error rate and gate time), and logical resource requirements of the quantum algorithms

(such as number of logical qubits). The tool automatically generates resource estimates for a

aThe corresponding author’s email address is suchara@berkeley.edu.
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2 Estimating the Resources for Quantum Computation with the QuRE Toolbox

cross product of algorithms, quantum technologies, and error-correction techniques. For each

combination, the toolbox reports detailed information including the level of concatenation or

code distance needed to achieve at least 50% circuit reliability, the actual circuit reliability,

running time of the algorithm, number of physical qubits, and a gate count with a breakdown

by gate type. For error-correcting codes that use ancilla factories, we also report the size

of the ancilla factory, number of gates used by the ancilla factory, and the time needed to

prepare one ancillary state.

In this work we consider a wide range of physical quantum technologies with realistic

properties, each with several choices of quantum control protocols. The properties of these

technologies have been studied by Hocker et al [3]. As shown in Section 3, the gate error rates

for the worst physical gate in these physical technologies range from approximately 10% for

Photonics I with primitive control down to 3.19 × 10−9 for ion traps with primitive control.

Since the error-correction threshold for concatenated codes is typically in the 1 × 10−3 to

1 × 10−5 range, many of the models do not meet the threshold, making these concatenated

error-correcting protocols unusable. On the other hand, the surface code which has threshold

around 1% meets the requirements of a majority of the models.

The QuRE toolbox is preloaded with information about a variety of quantum algorithms,

including binary welded tree algorithm [4], boolean formula algorithm [5], ground state es-

timation algorithm [6], quantum linear systems algorithm [7], shortest vector algorithm [8],

quantum class number algorithm [9], and the triangle finding problem [10]. We chose these

algorithms because their logical resource requirements are known and have been analyzed

in the scope of IARPA’s Quantum Computer Science program. The above referenced re-

ports show the total circuit gate count, detailed breakdown by gate type, and information

about parallelization for each of these algorithms. Moreover, the algorithms cover a range of

quantum computation primitives such as quantum Fourier transform, quantum simulation,

amplitude amplification, phase estimation, quantum walk and sieving. It should be noted

that the logical resource requirements of the selected algorithms vary widely. For example,

the binary welded tree algorithm requires 1, 220 logical qubits and 5.57 × 1010 logical gates,

whereas the shortest vector algorithm, which is believed to be a hard problem for quantum

computation, requires 4× 1018 qubits and 2.03× 1022 gates.

To accurately estimate the total physical resources, the QuRE toolbox heeds the locality

constraints of quantum technologies – two-qubit CNOT gates can only be performed locally

on two neighboring physical qubits. To that end, we use a tiled qubit layout for concatenated

codes. Each tile contains physical qubits that represent the state of a single fault-tolerant

logical qubit. To perform CNOT gates inside each tile, either SWAP gates or ballistic move-

ment must be used to move the two interacting qubits together. Since movement reduction is

clearly desirable, and different error-correcting codes have different structure, we use a custom

qubit layout for each of the three concatenated error-correcting codes. For Steane code, we use

the optimized qubit layout introduced by Svore et al. [11], and for the Bacon-Shor code the

optimized layout of Spedalieri et al. [12]. Since there is no known optimal layout that reduces

movement for the Knill’s post-selection error-correcting scheme, we designed our own. QuRE

also uses a tiled qubit layout for the surface code, where a pair of holes representing a logical

qubit resides inside a tile. However, the computation and error correction with the surface

code is inherently local, and no swapping of qubits is needed.
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The ion trap technology supports reliable ballistic movement of qubits. Our resource

estimation exploits the favorable properties of ballistic movement. The use of reliable ballistic

movement has three benefits. First, avoiding the need to use SWAP gates reduces the gate

count. Second, the reliability of the move operation improves the error-correction threshold

for concatenated codes, allowing to use fewer code concatenations. Finally, the move operation

is much faster than a SWAP gate, reducing the execution time.

This report is organized as follows. Section 2 provides a high level overview of the QuRE

toolbox. In Section 3 we describe the properties of the physical technologies used by the tool-

box, and in Section 4 we summarize the logical resource requirements of the studied quantum

algorithms. In Section 5 we discuss the generic aspects of resource estimation that pertains

to concatenated codes. We discuss tiled qubit layout, finding the optimal concatenation level,

overhead associated with correcting memory errors, specifics of ballistic movement. In Sec-

tion 6 we describe the specific qubit layout required by the Steane code and analyze the

overhead imposed by error correction using the Steane code, and quantify the number of ele-

mentary operations required to carry out certain operations at a specified concatenation level.

In Sections 7 and 8 we repeat the analysis for the Bacon Shor code and Knill’s post-selection

scheme. The resource requirements of quantum computation with the surface code are dis-

cussed in Sections 9 through 13. In Section 14 we provide some details about the Octave

scripts that were written to implement the resource estimation. Finally, in Section 15 we

show select numerical results that illustrate the resource estimation methodology developed

in this document.

2 Functionality of the QuRE Toolbox

Here we present a brief overview of the functionality of the QuRE toolbox. QuRE is imple-

mented in Octave and uses modular design to allow easy extendability.

Figure 1 shows a schematic view of the major components of QuRE. At the heart of

the tool is the Main Loop, which iterates over all specified quantum algorithms, quantum

technologies, and quantum error-correcting codes. For each combination, the Main Loop

calls appropriate modules that load information about the algorithm, technology and error-

correcting code.

An Algorithm Specification module provides information about the number of logical

qubits the particular algorithm needs. Logical qubits are defined as the fault-tolerant qubits

built of a greater number of unreliable physical qubits. Number of logical gates and simplified

information about the circuit parallelism are also specified by the module. Section 4 describes

how these specifications were obtained for the algorithms preloaded in the QuRE toolbox.

A Technology Specification module describes properties of a particular physical quan-

tum technology. It specifies the time needed to carry out each physical gate, the error of the

worst gate, and information about memory error rate per unit time. Note that by physical

gate we shall understand a non-fault-tolerant quantum gate that is provided by the technol-

ogy by executing one or more instructions. More details about the quantum technologies

preloaded into QuRE that are used in this paper are in Section 3.

An Error Correction Specification module is provided for each supported error-correcting

code. It quantifies the time and the number of physical gates needed to implement a logical

gate of each type at an arbitrary level of concatenation (or, in case of topological codes, for
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QuRE	  Main	  Loop	  
1.  Iterate	  over	  all	  algorithms,	  quantum	  technologies,	  and	  error-‐	  

correc8ng	  codes	  and	  call	  scripts	  specifying	  their	  proper8es	  
2.  Call	  concatenated	  code	  /	  surface	  code	  resource	  es8mator	  

Concatenated	  Code	  Resource	  Es4mator	  
i.  Find	  the	  op8mal	  concatena8on	  level	  
ii.  Es8mate	  the	  number	  of	  physical	  qubits,	  

running	  8me,	  and	  physical	  gate	  count	  
iii.  Es8mate	  addi8onal	  resources	  for	  state	  

dis8lla8on	  
iv.  Report	  results	  

Surface	  Code	  Resource	  Es4mator	  
i.  Find	  the	  op8mal	  code	  distance	  
ii.  Es8mate	  the	  total	  running	  8me	  and	  

number	  of	  physical	  qubits	  
iii.  Es8mate	  the	  total	  number	  of	  gates	  

needed	  while	  the	  algorithm	  runs	  
iv.  Report	  results	  

Algorithm	  Specifica4on	  
i.  Number	  of	  logical	  qubits	  

ii.  Number	  of	  logical	  gates	  

iii.  Circuit	  parallelism	  

Technology	  Specifica4on	  
i.  Quantum	  gate	  8mes	  

ii.  Quantum	  gate	  fideli8es	  

iii.  Memory	  error	  rate	  

Error	  Correc4on	  Specifica4on	  
i.  Cost	  of	  logical	  opera8ons	  at	  

specified	  concatena8on	  level	  
or	  code	  distance	  

ii.  Cost	  of	  state	  dis8lla8on,	  
memory	  error	  correc8on,	  etc.	  

1.	   1.	   1.	  

2.	   2.	  

Fig. 1. Functionality of the QuRE toolbox.

an arbitrary code distance). The module also quantifies the overhead caused by magic state

distillation, ancilla preparation, or any other operations pertinent to the particular error-

correcting code. The methodology used to quantify these metrics for the concatenated and

surface codes is described in Section 6 through 13.

The Concatenated Code Resource Estimator reports the resources needed by an

algorithm, technology, and concatenated code loaded by the Main Loop. First, the module

determines the minimum concatenation level that is sufficient to complete the algorithm

successfully with high probability. Then it evaluates the resources needed to carry out fault-

tolerant operations at that concatenation level, multiplies them by the number of operations

used by the algorithm, evaluates additional resources needed for magic state distillation, and

reports the results.

The Surface Code Resource Estimator reports the resources needed by the surface

code and works analogously to the Concatenated Code Resource Estimator.

3 Physical Quantum Computation Architectures

The properties of the quantum technologies used in the QuRE toolbox were studied by Hocker

et al. [3]. Their work describes six choices of a technology, and for some technologies they

study several possible choices of a quantum control protocol. They quantify the durations
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and errors of all basic gates, as well as memory errors that disrupt the state of idle qubits due

to interactions with the environment. The quantum technologies were modeled by Hocker et

al. [3] by mapping the complicated system dynamics of each architecture onto a simplified,

spin-based Hamiltonian. Noise effects were simulated with a Markovian master equation to

capture dissipative and dephasing effects, while stochastic errors were used to capture control

errors and environmental errors typically modeled with an open quantum system that is

dynamically coupled to a bath.

Here we briefly summarize the six quantum technologies, focusing on the quantities needed

for our resource estimates – the time to perform one- and two-qubit gates, and gate and

memory errors. Some of the chosen models are among the most promising candidates suitable

for building a large-scale quantum computer. At the same time, these models represent a

range of properties that the future quantum computer may possess – for example, very fast

but error prone superconductors, slower but more reliable ion traps, and neutral atoms with

only average speed and average error properties due to atomic movement of qubits.

Neutral Atoms [13]: In this technology, qubits are represented by ultracold atoms

trapped in an optical lattice. Light waves are used to trap and control the particles. Compared

to technologies with ion traps that trap charged ions in a magnetic or optical field, the

”ultracold” atom properties lead to their stability and great noise resilience. Ultracold atoms

are thermally isolated and experience very slow T1 and T2 times. The only dominant errors

arise from difficulties in precisely tuning the laser to a specific physical qubit position in the

lattice due to atom motion inside the lattice, i.e., it is difficult to hit the moving qubit with

a laser. The position offset causes an effective control error.

Superconductors [14, 15]: There are many different types of superconducting qubits.

The type considered here is a superconducting phase qubit. The primitive building block for

qubits is the Josephson Junction. Single- and two-qubit gates are based upon low-frequency

flux pulses or shaped GHz frequency microwave pulses, and state readout is based upon

a singleshot switched measurement. Superconducting qubits have very short gate times of

tens of nanoseconds. State preparation is based upon reset by dissipation, and is therefore

a relatively slower operation. Hocker et al. [3] attribute the relatively higher error rates

to Markovian noise (a combination of radiation leakage into the Josephson junction, circuit

defects, and engineering limitations upon insulating the system). The Markovian noise cannot

be reduced using pulse shaping techniques that maintain constant control resources. Reducing

gate times and the expense of increasing control resources can reduce such Markovian errors,

but Hocker et al. considered a constrained set of control resources common to such physical

system.

Ion Traps [16]: The ion trap quantum computer is based on a 2D lattice of confined

ions, each of which is a physical qubit which can be moved within the lattice to accommodate

local interactions between any two qubits. The ions are confined using electromagnetic field.

Lasers are applied to induce coupling between qubit states to implement quantum gates. The

noise terms in these laser mediated gates are associated with the intensity fluctuations of the

laser, resulting in very low gate errors. While ion traps are also quite stable to environmental

noise, being a charged system lends them susceptible to certain noise sources beyond those

experienced by neutral atoms.

Photonics I [17,18]: This type of photonics system is essentially a form of ”linear optics”
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Table 2. The probability of error of the worst gate and the probability of an error occurring on an

idle qubit for all studied quantum architectures.

Technology Control Probability of Memory Error

Gate Error (per ns)

Quantum Dots Primitive 9.89× 10−1 3.47× 10−2

Neutral Atoms Optimal 8.17× 10−3 0.00

Neutral Atoms Primitive 8.12× 10−3 0.00

Neutral Atoms Solovay Kitaev 1.77× 10−3 0.00

Neutral Atoms Trotter 1.47× 10−3 0.00

Photonics I Primitive 1.01× 10−1 9.80× 10−4

Photonics II Primitive 5.20× 10−3 9.80× 10−5

Superconductors Optimal 6.56× 10−4 1.00× 10−5

Superconductors Primitive 1.00× 10−5 1.00× 10−5

Ion Traps Dyn. Cor. Gates 7.99× 10−3 2.52× 10−12

Ion Traps Optimal 2.93× 10−7 2.52× 10−12

Ion Traps Primitive 3.19× 10−9 2.52× 10−12

quantum computing, where conventional optical equipment is used with a single element that

introduces a nonlinear gate in order to generate two-qubit gates, in this case a controlled

phase gate [18]. The elementary single-qubit gates are implemented in the polarization basis

with wave plates. Electro-optic modulators (EOM) can apply a desired wave plate action

commanded by classcial signal, i.e., voltages. Measurement is based on photon detection,

which can be obtained using a single-photon counter such as avalanche photodiode (APD).

A thermally excited electron can create a dark count, leading to a relatively high probability

of error (approximately 10%). Hocker et al. [3] use several ancillary photons and repeated

detection to achieve a sufficiently low measurement error that matches the error of other

gates.

Photonics II [19]: An alternative technology to use photons as qubits abandons the

linear optics paradigm and attempts to use minimal optical equipment to achieve gate opera-

tions. This technology performs two-bit gates deterministically by using the weak cross-Kerr

coupling native to the optical equipment and homodyne detection [19]. This is in contrast

to the photonics I approach that instead goes to great lengths to harness stronger nonlinear

effects.

Quantum Dots [20]: Two electrons confined to a double well quantum dot of GaAs

comprise single qubits. The logical basis are the lowest lying hyperfine energy levels of the

two-qubit system, which can be tuned to a spin triple or spin singlet regime by means of an

external voltage gate [20]. Controls are implemented through nearby voltage gates on each

well. There have been effective implementations of these systems with primitive control [20]

and dynamical decoupling. The reported errors are likely artificially too high because of

approximations used in simulating two-qubit gates, and difficulty with accurately simulating

the noise models. The reported errors are too high to make it usable with any error-correcting

scheme in our work. The studies of this technology are still ongoing, and results will likely

improve in further works.

In the models discussed above, the basic quantum gate set includes the following opera-
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tions: controlled not (CNOT), swapping of two qubits (SWAP), the Hadamard gate (H), state

preparation (|+〉 prep., |0〉 prep.), qubit measurement (X meas., Z meas.) the Paulis (X, Y, Z)

and the S and T gates (S, T). We use this gate set throughout this document. Note that the

gate set is universal for quantum computation, and is overinclusive. All the quantum tech-

nologies either support these operations natively, or the gates can be constructed from more

elementary operations. For example, SWAP can be constructed using three CNOT gates.

Note that there is often more than one way to compose a gate. For example, an alternative

way of decomposing the SWAP gate is to use an iSWAP , CPHASE, and two (parallel) S

gates. This particular decomposition can yield substantially better error rate and gate time –

for example, this takes a total of 17 ns on the superconducting architecture, compared to the

66 ns needed to perform three CNOT s, reducing both the gate time and error. The report

of Hocker et al. describes the optimal choices for these decompositions.

The durations of basic one- and two-qubit gates are shown in Table 1. Note that all units

of time in this paper are in nanoseconds, unless stated otherwise. Another important property

of the technologies is reliability. Table 2 summarizes the error probability after applying the

worst gate, as well as the probability of a bit flip per nanosecond on an idle qubit.

The models of Hocker et al. [3] consider many details that a realisitic computer must

posses, including a basic instruction set, errors due to qubit movement and decoherence, and

the use of currently known control protocols to optimize properties of quantum gates. While

the experimental demonstrations of these technologies to date have been limited to small scale,

the models used here are among the most plausible and realistic for a large scale quantum

computer.

4 Quantum Algorithms

In order to study the resource requirements of quantum computation, we need to use repre-

sentative quantum algorithms with the right ”mix” of quantum gates and known parallelism

properties. For this purpose, the following algorithms were studied in the IARPA Quantum

Computer Science program, and we report their properties here:

• binary welded tree algorithm [4] which finds the opposite root of two connected binary

trees,

• boolean formula algorithm [5] which evaluates a boolean formula,

• ground state estimation algorithm [6] which finds the ground state energy of a molecule,

• quantum linear systems algorithm [7] which finds x in the linear system Ax = b,

• shortest vector algorithm [8] which finds unique shortest vector in an integer lattice,

• quantum class number algorithm [9] which finds the order of the class group of a real

quadratic field, and

• the triangle finding problem [10] which finds the nodes forming a triangle in a dense

graph.

These algorithms represent several key algorithmic techniques, including e.g. quantum Fourier

transform, quantum simulation, amplitude amplification, quantum random walk, quantum
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simulation, and phase estimation. These techniques form the building blocks of many other

quantum algorithms.

The resource requirements reported in this section use problem sizes specified in the

IARPA Computer Science program, and are studied in [4–10]. The problem sizes in the

IARPA program were chosen so that they are untractable for classical computers. There-

fore, it should not be surprising that some of the studied algorithms may be intractable for

quantum computers as well. We describe the algorithms and the problem sizes next.

4.1 Description of the Quantum Algorithms

Binary Welded Tree [21]: The problem input is a pair of binary trees that are connected at

their leaves. The goal is to start at a root of one of the trees marked as ’entrance’ and find the

opposite root marked as ’end’ by traversing the graph. The algorithm uses an oracle to discover

the structure of the graph. The oracle returns the names of the three neighbors of a specified

vertex. Due to a careful construction of the problem (each node has an exponential number

of labels, trees are connected in a specific way, etc.) a sub-exponential classical algorithm

that finds the ’end’ w.h.p. is not known. A quantum algorithm that uses continuous-time

quantum random walk finishes in polynomial time. In order to evaluate a problem instance

that is intractable for classical computers, the tree depth was chosen as n = 300.

Boolean Formula [22]: This problem uses the algorithm of Childs et al. [22] for solving

the boolean formula problem which determines if an {AND,OR} tree evaluates to true. The

boolean formula algorithm is used to find the best overall strategy in a two-player game of

hex with a 9 by 7 board. The sequence of moves in a two-player game can be represented by

an {AND,OR} tree where the leafs correspond to the outcomes of the game. The algorithm

is based on discrete-time quantum walk. An oracle indicates which of the two players wins.

Ground State Estimation [23]: This algorithm finds the ground state energy, E0, of

a specified molecule. The energy is estimated to b bits of precision. The quantum circuit

for the algorithm is studied in [6] which quantifies the logical gate counts in the quantum

circuit as a function of the precision b and the number of wave functions M that describe

the ground state. The polynomial time quantum algorithm is based on the approach outlined

in [23] which uses quantum simulation and phase estimation. In this work, we chose a problem

instance that finds E0 for the Fe2S2 molecule with b = 9 bits of precision. Note that the

Fe2S2 molecule needs M = 208 wave functions to describe the ground state.

Quantum Linear Systems [24]: The algorithm finds the solution to a linear system

Ax = b by mapping it into a quantum system A |x〉 = |b〉 with state vectors |x〉 and |b〉
and Hamiltonian A. Quantum phase estimation and Fourier transform are used to solve for

|x〉 by extracting the eigenvalues of A. The studied problem size is dim(A) = 3 ∗ 108. The

report [7] analyses a deterministic variant of the quantum linear systems algorithm where a

non-deterministic measurement is replaced by estimating probabilities using amplitude esti-

mation.

Shortest Vector Algorithm [25]: Given a n× n integer lattice B, the algorithm finds

an integer vector v such that the vector Bv has minimal length under the Euclidean norm.

The problem formulation also guarantees that the shortest vector is unique – the next shortest

vector is longer by a factor of at least n3. The conceptual primitives used by the quantum

algorithm are quantum Fourier transform and sieving. This algorithm is not efficient because
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it runs in a time longer than poly(n). Nevertheless, it is interesting because it uses a variety

of primitives, some of which are not explored by the other quantum algorithms. The instance

size was chosen as n = 50.

Quantum Class Number [26]: This algorithm finds the order of the class group of a

real quadratic number field. The analysis is based on the work of Hallgren [26] that shows

how the class number of a real quadratic number field may be computed by extending a

standard algorithm for the hidden subgroup problem. The algorithm also uses quantum

Fourier transform. The size of the problem was chosen to be n = 124 decimal digits in the

quadratic discriminant.

The Triangle Finding Problem [27]: Given a dense graph, this algorithm finds the

nodes in the graph forming a triangle if one exists. Similarly as in the case of the binary

welded tree algorithm, an oracle and a specific graph structure is used to ensure the problem

does not have an efficient classical solution. The graph is dense, containing fully connected

sub-components, and only one triangle, if any. The conceptual primitives used by the efficient

quantum algorithm are quantum random walk and amplitude amplification. In this work we

chose a graph with 32, 768 nodes.

4.2 Methodology for Logical Resource Estimation

The algorithm analyses in [4–10] report logical gate counts that contain discrete quantum gates

as well as arbitrary rotations. Each of these arbitrary rotations needs to be decomposed into a

discrete set of gates that can be implemented fault tolerantly. To perform this decomposition,

we use the result of Bocharov et al. [28] that shows how to obtain minimal depth decomposition

in the {H,T} basis, ensuring that the occurrence of expensive T gates is minimized. Their

approach is based on the Solovay-Kitaev theorem [29].

The result of Bocharov et al. [28] states that for any ε, an arbitrary single-qubit gate U

can be decomposed with precision ε using Θ(logc(1/ε)) gates from the universal discrete gate

set. Figure 3 in [28] shows that a decomposition that uses 1, 000 T gates results in gate error

of 1×10−7. Furthermore, increase of the number of T gates in the decomposition by one order

of magnitude improves the error by three orders of magnitude. Our QuRE toolbox uses the

results of this empirical study. We first determine the desired precision of the decomposition

so that 50% probability of success of the algorithm can be guaranteed. Then we quantify the

number of H and T gates per rotation.

Let arbitraryRot denote the number of arbitrary rotations in the algorithm, and let

errorPerRot be the desired maximal error for each arbitrary rotation. To guarantee that

the accumulated error across all rotations is at most 0.5, it is sufficient to require:

errorPerRot ≤ 0.5/arbitraryRot (1)

Then from Figure 3 in [28] the number of H and T gates per rotation is approximately:

gatesPerRot = 10
2−log10(errorPerRot)

3 . (2)

4.3 The Logical Resource Requirements

The summary of the properties of the quantum algorithms appears in Tables 3, 4, and 5. Note

that the data in these tables summarizes the logical resource requirements of the algorithms
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Table 5. The number of logical qubits required by each algorithm.

Algorithm Logical Qubits

Binary Welded Tree 1.22× 103

Boolean Formula 2.63× 103

Class Number 1.88× 1017

Ground State Est. 2.20× 102

Quant. Linear Syst. 2.55× 102

Shortest Vector 4.00× 1018

Triangle Finding 9.04× 107

before error-correction overhead is taken into account. In particular, Table 5 shows the number

of logical qubits needed by each algorithm. This count includes all ancillas. Table 3 shows the

number of logical quantum gates of each type needed to implement each algorithm. Finally,

Table 4 shows the parallelization factor for each gate type. The parallelization factor indicates

how many of the gates of a particular type can be performed in parallel. For example, in

case of the ground state estimate algorithm, we see that 1.51× 1010 logical Hadamard gates

are needed, and the parallelization factor is 6, meaning that on average 6 H gates can be

scheduled simultaneously in the logical quantum circuit.

5 Error Correction with Concatenated Codes

This section describes our high level approach to error correction with the concatenated

codes. First in Subsection 5.1 we introduce a qubit layout that uses tiles as building blocks,

and describe the functionality of a single tile. Then in Subsection 5.2 we explain why it is

necessary to customize the qubit layout in each tile to meet the specific requirements of each

error-correcting code / quantum technology combination. In Subsection 5.3 we explain how

to determine the optimal number of concatenation levels of error correction as well as how

to estimate the success probability of the algorithm. Finally, in Subsection 5.4 we quantify

the resources needed to correct memory errors and in Subsection 5.5 we justify our choice of

syndrome extraction method.

5.1 The Tiled Qubit Layout

Our qubit layout for concatenated codes is modeled after the microarchitecture of Svore et

al. [11], and Spedalieri et al. [12]. In particular, we use a block structure, where each building

block (tile) stores a logical qubit. Each tile contains enough space to store one data qubit,

one ancilla, sufficient number of verification qubits (to allow ancilla verification), and space

for all data qubits from one neighboring tile. Error correction can be performed in each tile

by applying the correct gate sequence. Communication between tiles is achieved by swapping.

For example, to perform a CNOT operation on two neighboring tiles, the data qubits from

one tile are moved into the other tile, the CNOT operation is performed, and then the qubits

return to their original location.

A high level picture of the architectural organization is in Figure 2. We assume that the

tiles are arranged in a 2-D structure. An example of the structure of a tile is shown in Figure 3.

The figure shows the layout of Svore et al. [11] which has tile size 6 × 8. At higher levels of

concatenation, the structure is expanded in a hierarchical fashion using 6× 8 building blocks
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Fig. 2. The qubit layout consists of tiles. Each tile represents one logical qubit.

Fig. 3. One tile at the second concatenation level (bounded by the large green box). A tile at the

first level of concatenation consists of the qubits in the smaller red box.

from the next lower level. Note that the tile size will differ for different concatenated codes

as enough qubits must be present to store one logical data qubit as well as ancillas needed to

perform error correction on the data.

5.2 Customizing Qubit Layout

The layout needs to be customized for each concatenated code. The Steane code uses a

tile of size 6 × 8 whereas the Bacon Shor code uses a tile of size 7 × 7. The qubit layout

and sequence of operations needed to perform error correction was optimized to maximize

the error-correction threshold and minimize movement and number of operations in [11, 12].

Therefore, we use the same layout. Since the optimal layout for the Knill’s post-selection

scheme hasn’t been studied, we had to design our own tile and sequence of operations.
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5.3 Finding the Optimal Concatenation Level

Here we answer the question how many levels of concatenation we need to achieve a desired

fidelity. Let’s assume that p is the gate error, the failure probability of components at the

lowest level of the code. Fault-tolerant constructions of the gates guarantee that the proba-

bility that a circuit introduces two errors is O(p2) = cp2 if no concatenation is used. Here

c = 1/pth is a constant representing the threshold of the concatenated code. It follows that

with two levels of concatenation, the probability of failure becomes c(cp2)2, and with k lev-

els of concatenation (cp)2k/c. Suppose that we wish to simulate a circuit with N gates and

achieve final accuracy of ε. Thus each gate must be accurate to ε/N so we need to find k

satisfying: (cp)2
k

c ≤ ε
N .

In this work we assume that the circuit needs to finish with success probability of at least

50%. Therefore, the desired concatenation level is k = dlog( log(0.5/(N∗pth))
log(p/pth) )/log(2)e, and the

probability with which the circuit outputs the correct result is psuccess = (1 − pth( p
pth

)2L)N .

Note that the success probability psuccess will be generally in the 50% to 100% range due to

the use of the ceiling function when calculating the desired concatenation level k.

5.4 Correcting Memory Errors

Error correction needs to be performed periodically even for idle qubits on which no quantum

gates act. As was shown in Section 3, the memory error rate for a single qubit ranges up to

pmem = 3.47 × 10−2 per ns. To estimate the resources needed to correct memory errors, we

assume that these errors are corrected periodically for all qubits, and calculate the optimal

amount of time T between subsequent error-correction steps. This approach should not lead

to significant overestimation of resources because our algorithm analysis shows that most

of the qubits are idle most of the time, and successive gates that are always followed by

error-correction operations frequently act on the same set of qubits.

Error correction needs to be performed early enough to ensure that the probability of an

error on any single qubit is below the gate errror probability p. Thus we require T = p/pmem.

5.5 Choice of Syndrome Extraction

The three possible error syndrome extraction methods are Knill, Shor, and Steane. We use

the Steane extraction method for the Steane and Bacon-Shor codes and Knill’s method for

the Knill’s post-selection scheme for the following reasons:

1. Steane code: for our qubit layout, it is important to minimize the use of space and

thus movement, potentially at the cost of increased waiting and memory errors. The

reason is that memory errors will typically occur at lower rates than SWAP gate er-

rors. This leaves us with the choice of the Shor’s and Steane’s method, because Knill’s

method requires two ancillas, and hence our tiles would have to be much bigger, require

more operations per gate, more physical qubits, and all operations would take longer.

Of the remaining two, Shor’s method is slightly more space efficient if implemented fully

sequentially. However, in Shor-type syndrome extraction, the number of gates between

data and ancilla qubits is greater than in Steane-type syndrome extraction, which will

negatively affect the threshold, requiring more concatenations, and more frequent cor-

rection of memory errors on idle qubits. Therefore, we believe that Steane’s method is
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superior to the other two. Steane syndrome extraction was chosen for similar reasons

in [11].

2. Bacon-Shor code: We chose Steane syndrome extraction for the same reasons as

above.

3. Knill’s post-selection scheme: The Knill’s post-selection scheme requires the use of

Knill’s method.

6 Error Correction with the Steane Code

Now we describe the overhead imposed by error correction using the Steane [[7, 3, 1]] code [1,2].

First in Subsection 6.1 we provide some notation and explain how gates can be implemented

fault tolerantly. Then in Subsection 6.2 we describe the tile size and qubit locations within a

tile optimized for the Steane code. Then in Subsection 6.3 we provide resource estimates for

each logical gate assuming that the Steane code uses m levels of concatenation. Note that

numerical results appear in Section 15 at the end of the document. There we illustrate the

resource estimation methodology developed in this section by showing the resources used by

elementary logical gates at different concatenation levels, as well as the total resources needed

by each algorithm on all the studied physical technologies.

6.1 The Steane Code

Logical qubits in the Steane code are encoded using seven qubits. The Steane Code is a sta-

bilizer code [30] with stabilizers g1 = IIIXXXX, g2 = IXXIIXX, g3 = XIXIXIX, g4 =

IIIZZZZ, g5 = IZZIIZZ, g6 = ZIZIZIZ that map the encoded logical states to them-

selves. Therefore, the logical states |0̄〉 and |1̄〉 can be written as follows: |0̄〉 = 1√
8
[|0000000〉+

|1010101〉 + |0110011〉 + |1100110〉 + |0001111〉 + |1011010〉 + |0111100〉 + |1101001〉], and

|1̄〉 = 1√
8
[|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉+ |1110000〉+ |0100101〉+ |1000011〉+

|0010110〉]. Note that the states |0̄〉 and |1̄〉 were chosen to have even and odd number of

ones, respectively.

The Steane code can be concatenated, each Level m encoded qubit block is built using

seven Level m− 1 logical qubits and gates. Level 1 blocks are at the lowest level of encoding

and they are built of Level 0 qubits and gates provided at the physical level.

We will use the following notation. Standard gates at the m-th level of concatenation

are denoted by X(m), Y(m), Z(m), CNOT(m), H(m), S(m), T(m). Measurement in the X and

Z basis will be denoted by MX(m) and MZ(m). Fault-tolerant preparation of states |0〉
and |+〉 at the m-th level of concatenation is denoted by P|0〉(m) and P|+〉(m). The error-

correction operation is represented by EC(m) and error detection is represented by ED(m). In

our analysis, the sequence of operations required to implement a specified gate or operation is

denoted ops(...), and the time required to perform the specified operation when parallelization

is taken into account is denoted time(...) where ... is replaced by the operations we wish to

analyze.

It is easy to verify that the two circuits in Figure 4 produce the logical states |0̄〉 and |+̄〉.
However, these circuits are not fault tolerant as a single fault will lead to preparation of an

incorrect state. The fault-tolerant implementation of these circuits is shown in Figure 5. To

prepare state |0̄〉, both the data code block |Q〉 and an ancilla |V 〉 are non-fault tolerantly
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Fig. 4. Non-fault-tolerant circuit for preparation of state |0̄〉 on the left and |+̄〉 on the right.

Fig. 5. Fault-tolerant preparation of state |0〉 and |+〉 must be repeated until the measurement

outcome c is 1.

initialized in state |0̄〉. A fault in the preparation is detected by performing a CNOT on the

two code blocks and measuring the ancilla in the Z basis. If the measurement outcome is −1

an error occurred and the process must be repeated. The state |+̄〉 can be prepared similarly

as shown on the right hand side of the figure.

The Steane code belongs to the family of Calderbank-Shor-Steane (CSS) codes, a family of

codes with transversal implementation of most gates, including the CNOT gate. Transversal

CNOT gate at Level m can be obtained by applying seven CNOT gates to the corresponding

control and target qubits at Level m− 1. Figure 6 shows a fault-tolerant implementation of

the CNOT gate. Gates that can be performed transversally also include the single qubit Pauli

gates and S and H gates. Figure 6 also shows how to do measurement. Since the logical state

|0̄〉 and |1̄〉 have even and odd number of ones, respectively, the classical parity calculation on

the Z basis measurements of the seven code blocks distinguishes |0̄〉 and |1̄〉. To ensure fault

tolerance, each logical gate is followed by error correction.

In order to have a universal gate set, we also need the π/8 gate called the T gate. Un-

fortunately, a fault-tolerant version of this gate cannot be constructed transversally. A fault-

tolerant T gate is shown in Figure 7. This gate sequence was originally constructed in [31]

using one-bit teleportation. The gate sequence teleports the state |ψ〉 from the data block to

the ancilla and applies the T gate to the state. Note that the ancilla must be fault-tolerantly

initialized in the state |φ+〉 = TH |0〉 = |0〉+eiπ/4|1〉√
2

. This initialization is shown in the dashed

block, and requires two fault-tolerant preparations of the cat state 1√
2
(|0〉 + |1〉), which is

depicted in Figure 8.

To correct errors, we use the Steane error extraction method [2,32] that can be better par-

allelized and uses fewer gates than the cat state method [32]. A fault-tolerant implementation

of the Steane method is shown in Figure 9. Two ancillas are prepared fault-tolerantly, one in

state |+〉 and the other in state |0〉. X errors are corrected first. The first CNOT does not

affect the encoded state of the ancilla |+〉 or the encoded code block, but it propagates each
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Fig. 6. Fault-tolerant implementation of the CNOT gate (on the left), the single qubit gates X,
Y , Z and S (top right corner), and Z basis measurement (bottom right).

CAT	   CAT	  

Fig. 7. Fault-tolerant T gate construction.

X error in the data to the corresponding position on the |+〉 ancilla. The Z-type syndrome

which detects X errors is extracted by measuring the ancilla qubits in the Z basis and apply-

ing a classical parity check to the measurement outcomes. E.g., for a stabilizer
⊗n

i=1 Z
bi and

measurement outcome (z1, z2, ..., zn) the eigenvalue of the stabilizer is b · z. The X-type error

correction is then performed as indicated by the syndromes, this is represented in the circuit

in Figure 9 by the symbol RX . The X-type stabilizers are obtained similarly by coupling

the data to the ancilla initialized in state |0〉, applying a CNOT and X basis measurement

followed by the parity check and Z-type error correction, if any.

Note that the error detection operation denoted ED differs from the error correction EC
depicted in Figure 9 by removing the two error-correction operations RX and RZ .
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Fig. 8. Fault-tolerant circuit for cat state preparation.

Fig. 9. Illustration of the Steane-EC syndrome extraction method.

6.2 Tiled Layout for the Steane Code

In order to appropriately quantify the resources required, we first describe the physical layout

being used. We use the tile structure used in [11], designed to minimize the amount of SWAP

operations used during error-correction routines, and thus preserve a high error threshold. The

tile consists of a 6×8 lattice of qubits. The following figure shows a snapshot of the operations

and state of the tile during the ancilla preparation part of error correction:

0 0 0 0 0 0 0 0
0 d6 0 d5 0 d3 0 0
0 0 v3 a3 a6 0 0 0
0 0 v2 a5 a4 a1 0 0
0 0 v1 a2 0 a7 0 0
0 d4 0 d2 0 d1 0 d7

(3)

Ancilla qubits are labeled with a and data qubits are labeled with d. Ancilla qubits labeled

with v are used for verification. O locations represent dummy qubits that are used as channels

when qubits are swapped. For details on the exact gate sequences being used we refer the

reader to the original paper [11]. The threshold obtained for this layout, and the corresponding

circuits implementing the error-correction subroutines, is pth = 3.6 × 10−5 which compares

favorably to the idealized threshold pth = 1.85× 10−5 that ignores the cost of movement [11].

It is easy to calculate the number of physical qubits in the system. In a system with n

tiles and Steane code with l levels of concatenation, the number of physical qubits we need

is n(8 × 6)l. Note that the number of physical qubits is different when the Bacon code and

the Knill scheme are used. First, these codes use tiles of different size. Second, these codes

require the use of ancillas, and additional space is needed for ancilla factories. We provide

estimates of the size of ancilla factories in our Bacon-Shor code and Knill scheme analysis in

the subsequent sections.
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6.3 Quantifying Resources with m Levels of Concatenation

Here we estimate the resources needed to perform a single logical gate at Level m of con-

catenation with the Steane code. Specifically, we calculate the number of Level 0 gates, and

the total gate time taking parallelization into account. We distinguish horizontal and vertical

CNOT gates, horizontal and vertical CNOT s act on qubits (or tiles) that are adjacent along

the horizontal and vertical axes, respectively. Similarly we distinguish horizontal and vertical

SWAP gates. We express the resources for a single logical gate at Level m:

Error Detection and Correction

A fault-tolerant implementation of qantum error-correcting protocol for a single logical code

block (assuming ancilla preparation always succeeds):

(4a)ops(EC(m)) = (4 + 4 + 6)hCNOT(m−1) + (21 + 7)vCNOT(m−1) + 7H(m−1)

+ 18hSWAP(m−1) + 15vSWAP(m−1) + 8P|+〉(m−1) + 12P|0〉(m−1) + 20MX(m−1)

(4b)

time(EC(m)) = 2max(P|+〉(m−1), P|0〉(m−1))

+ 2max(P|+〉(m−1), P|0〉(m−1), hCNOT(m−1), vCNOT(m−1))

+ 2max(hSWAP(m−1), vSWAP(m−1), vCNOT(m−1), P|0〉(m−1))

+ 2max(hSWAP(m−1) + hCNOT(m−1), vCNOT(m−1))

+ 2max(hSWAP(m−1), hCNOT(m−1))

+ 2max(hSWAP(m−1), vSWAP(m−1), hCNOT(m−1),MX(m−1))

+ 2max(hSWAP(m−1), vSWAP(m−1),MX(m−1))

+ 2vCNOT(m−1) + 2MX(m−1)

Error detection for a single logical code block:

(5a)ops(ED(m)) = EC(m)

(5b)time(ED(m)) = EC(m)

Fault-Tolerant Horizontal and Vertical CNOT Gate

(6a)ops(hCNOT(m)) = 7vCNOT(m−1) + 112hSWAP(m−1) + 14vSWAP(m−1) + EC(m)

(6b)ops(vCNOT(m)) = 7vCNOT(m−1) + 12hSWAP(m−1) + 70vSWAP(m−1) + EC(m)

(6c)time(hCNOT(m)) = max(hSWAP(m−1), vSWAP(m−1)) + 6hSWAP(m−1)

+ vCNOT(m−1) +max(P|+〉(m−1), P|0〉(m−1), hSWAP(m−1))

+max(P|+〉(m−1), P|0〉(m−1), hCNOT(m−1), vCNOT(m−1), hSWAP(m−1))

+max(P|+〉(m−1), P|0〉(m−1)) +max(P|+〉(m−1), P|0〉(m−1), hCNOT(m−1), vCNOT(m−1))

+ 2max(hSWAP(m−1), vSWAP(m−1), vCNOT(m−1), P|0〉(m−1))

+ 2max(hSWAP(m−1) + hCNOT(m−1), vCNOT(m−1))

+ 2max(hSWAP(m−1), hCNOT(m−1))

+ 2max(hSWAP(m−1), vSWAP(m−1), hCNOT(m−1),MX(m−1))

+ 2max(hSWAP(m−1), vSWAP(m−1),MX(m−1)) + 2vCNOT(m−1) + 2MX(m−1)
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(6d)time(vCNOT(m)) = max(vSWAP(m−1), hSWAP(m−1))

+ 2max(vSWAP(m−1), vCNOT(m−1)) + 4vSWAP(m−1)

+max(P|+〉(m−1), P|0〉(m−1), hSWAP(m−1), vSWAP(m−1))

+max(P|+〉(m−1), P|0〉(m−1), hCNOT(m−1), vCNOT(m−1), hSWAP(m−1))

+max(P|+〉(m−1), P|0〉(m−1)) +max(P|+〉(m−1), P|0〉(m−1), hCNOT(m−1), vCNOT(m−1))

+ 2max(hSWAP(m−1), vSWAP(m−1), vCNOT(m−1), P|0〉(m−1))

+ 2max(hSWAP(m−1) + hCNOT(m−1), vCNOT(m−1))

+ 2max(hSWAP(m−1), hCNOT(m−1))

+ 2max(hSWAP(m−1), vSWAP(m−1), hCNOT(m−1),MX(m−1))

+ 2max(hSWAP(m−1), vSWAP(m−1),MX(m−1)) + 2vCNOT(m−1) + 2MX(m−1)

Fault-Tolerant Horizontal and Vertical SWAP Gate

(7a)ops(hSWAP(m)) = 56hSWAP(m−1) + EC(m)

(7b)ops(vSWAP(m)) = 42vSWAP(m−1) + EC(m)

(7c)time(hSWAP(m)) = 8hSWAP(m−1) + EC(m)

(7d)time(vSWAP(m)) = 6vSWAP(m−1) + EC(m)

Fault-Tolerant Pauli Gates and Hadamard

Fault-tolerant implementation of the X gate:

(8a)ops(X(m)) = 7X(m−1) + EC(m)

(8b)time(X(m)) = X(m−1) + EC(m)

The properties of the transversal gates Y(m), Z(m), H(m) as well as the transversal construc-

tions Strans and Ttrans are obtained by substituting for X in the equations above.

Fault-Tolerant Measurements

Measurement in the X-basis:

(9a)ops(MX(m)) = 7MX(m−1) + EC(m)

(9b)time(MX(m)) = EC(m)

Measurement in the Z-basis:

(10a)ops(MZ(m)) = 7MZ(m−1) + EC(m)

(10b)time(MZ(m)) = EC(m) −MX(m−1) +max(MX(m−1),MZ(m−1))

Fault-Tolerant Preparation of a Logical State

Note that the expected number of gates required to re-initialize the ancillas upon initialization

failure is negligible, and, therefore, we ignore these operations. Preparation of the logical state

|+〉:

(11a)
ops(P|+〉(m)) = (2 + 2 + 3)hCNOT(m−1) + 7vCNOT(m−1)

+ 7H(m−1) + 9hSWAP(m−1) + 11vSWAP(m−1)

+ 4P|+〉(m−1) + 6P|0〉(m−1) + 3MX(m−1) + EC(m)
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(11b)time(P|+〉(m)) = max(P|+〉(m−1), P|0〉(m−1))

+max(P|+〉(m−1), P|0〉(m−1), hCNOT(m−1), vCNOT(m−1))

+max(hSWAP(m−1), vSWAP(m−1), vCNOT(m−1), P|0〉(m−1))

+max(hSWAP(m−1) + hCNOT(m−1), vCNOT(m−1)) +max(hSWAP(m−1), hCNOT(m−1))

+max(hSWAP(m−1), vSWAP(m−1), hCNOT(m−1),MX(m−1))

+max(hSWAP(m−1), vSWAP(m−1),MX(m−1)) + EC(m)

−max(P|+〉(m−1), P|0〉(m−1)) +max(P|+〉(m−1)), P|0〉(m−1), vSWAP(m−1))

−max(P|+〉(m−1), P|0〉(m−1), hCNOT(m−1), vCNOT(m−1))

+max(P|+〉(m−1), P|0〉(m−1), hCNOT(m−1), vCNOT(m−1), H(m−1))

Preparation of the logical state |0〉:

(12a)
ops(P|0〉(m)) = (2 + 2 + 3)hCNOT(m−1) + 7vCNOT(m−1) + 9hSWAP(m−1)

+ 11vSWAP(m−1) + 4P|+〉(m−1) + 6P|0〉(m−1) + 3MX(m−1) + EC(m)

(12b)

time(P|0〉(m)) = max(P|+〉(m−1), P|0〉(m−1))

+max(P|+〉(m−1), P|0〉(m−1), hCNOT(m−1), vCNOT(m−1))

+max(hSWAP(m−1), vSWAP(m−1), vCNOT(m−1), P|0〉(m−1))

+max(hSWAP(m−1) + hCNOT(m−1), vCNOT(m−1))

+max(hSWAP(m−1), hCNOT(m−1))

+max(hSWAP(m−1), vSWAP(m−1), hCNOT(m−1),MX(m−1))

+max(hSWAP(m−1), vSWAP(m−1),MX(m−1)) + EC(m)

−max(P|+〉(m−1), P|0〉(m−1)) +max(P|+〉(m−1), P|0〉(m−1), vSWAP(m−1))

Preparation of the logical cat state:

(13a)
ops(Pcat(m)) = 6hCNOT(m−1) + 2vCNOT(m−1) + 9hSWAP(m−1)

+ 8vSWAP(m−1) + P|+〉(m−1) + 7P|0〉(m−1) +MZ(m−1) + EC(m)

(13b)

time(Pcat(m)) = max(P|+〉(m−1), P|0〉(m−1)) + 2vCNOT(m−1)

+ 3hCNOT(m−1) +max(MZ(m−1), hSWAP(m−1), vSWAP(m−1))

+ 2max(hSWAP(m−1), vSWAP(m−1))

+ hSWAP(m−1) + vSWAP(m−1) + EC(m)

Fault-Tolerant S Gates

(14a)
ops(S(m)) = P|0〉(m) + 4Strans(m) + 2P|cat〉(m) + 14vCNOT(m−1)

+ hCNOT(m) + 14MX(m−1) +MZ(m) + EC(m)

(14b)
time(S(m)) =max((P|0〉(m) +Strans(m)), P|cat〉(m)) +max(Strans(m), P|cat〉(m))

+2hCNOT(m−1) +hCNOT(m) +2max(Strans(m),MX(m−1))+MZ(m) +EC(m)

Fault-Tolerant T Gates

(15a)
ops(T(m)) = P|0〉(m) + 4Ttrans(m) + 2P|cat〉(m) + 14vCNOT(m−1)

+ hCNOT(m) + 14MX(m−1) +MZ(m) + EC(m)

(15b)
time(T(m)) =max((P|0〉(m) +Ttrans(m)), P|cat〉(m))+max(Ttrans(m), P|cat〉(m))

+2hCNOT(m−1) +hCNOT(m) +2max(Ttrans(m),MX(m−1))+MZ(m) +EC(m)
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Fig. 10. 3× 3 representation of the Bacon Shor code.

7 Error Correction with the Bacon-Shor Code

In this section we estimate the overhead imposed by the Bacon Shor [[9, 3, 1]] error-correcting

code. This section is organized as follows. First we describe basic properties of the code and

the basic circuits used to implement a universal gate set using an ancilla factory model, i.e., a

zone of the computer in charge of distilling high quality ancillas required to execute S and T

gates. Then we build the recursive relations resulting from the concatenated code structure

in order to quantify the total number of gates and total time required by each elementary

operation.

7.1 The Bacon Shor Code

Logical qubits in the [[9,3,1]] Bacon Shor subsystem code are encoded using nine qubits. The

Bacon Shor Code is a subsystem stabilizer code [31] better pictured in a 3 × 3 array with

stabilizers

g1 =
X X X
X X X
I I I

g2 =
I I I
X X X
X X X

g3 =
Z Z I
Z Z I
Z Z I

g4 =
I Z Z
I Z Z
I Z Z

that map the encoded logical states to themselves. Logical X (or Z) Pauli operators can be

executed via a homogeneous X (or Z) pulse modulo stabilizer operations, which in particular

implies that logical X (or Z) operators can be implemented by a homogeneous action on one

row (or column) of the array. There is no unique way of writing the codewords given the

gauge freedom induced by the subsystem structure. There exists a set of gauge operators

OG consisting of pairs of X (or Z) Pauli operators acting on the same column (or row)

which commute with the stabilizer and logical operators and thus act trivially on the encoded

information.

The Bacon Shor code can be concatenated, each Level m encoded qubit block is built

using nine Level m − 1 logical qubits and gates. Level 1 blocks are at the lowest level of

encoding and they are built of Level 0 qubits and gates provided at the physical level. Each

of the gates below show how to execute an operation at some level of concatenation m using

gates of level m− 1.
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|0〉
P|0〉

|q1〉 |+〉 •

|q4〉 |0〉 ⊕⊕

|q7〉 |+〉 •

|q2〉 |+〉 •

|q5〉 |0〉 ⊕⊕

|q8〉 |+〉 •

|q3〉 |+〉 •

|q6〉 |0〉 ⊕⊕

|q9〉 |+〉 •

|+〉
P|+〉

|q1〉 |+〉 • •

|q2〉 |0〉 ⊕

|q3〉 |0〉 ⊕

|q4〉 |+〉 • •

|q5〉 |0〉 ⊕

|q6〉 |0〉 ⊕

|q7〉 |+〉 • •

|q8〉 |0〉 ⊕

|q9〉 |0〉 ⊕

Fig. 11. Illustration of the state preparation with the Bacon-Shor code.

We will use the same notation as in the previous section. Namely, standard gates, mea-

surement operations and state preparation at the m-th level of concatenation are denoted by

X(m), Y(m), Z(m), CNOT(m), H(m), S(m), T(m), MX(m), MZ(m), P|0〉(m) and P|+〉(m). The

error correction and detection is represented by EC(m) and ED(m). Operations required to

implement a gate are denoted ops(...), and the required time is time(...).

First we consider the preparation of encoded states. The circuit shown in Figure 11 shows

how to encode logical |0〉 and |+〉 at level m of concatenation, using as resources gates at level

m− 1.

Having described how to prepare encoded states, let us proceed to show how one can

manipulate them, and how to implement a set of universal gates.

The Bacon-Shor code belongs to the family of Calderbank-Shor-Steane (CSS) codes, a

family of codes with transversal implementation of most gates, including the CNOT gate.

Transversal CNOT gate at Level m can be obtained by applying nine CNOT gates to the

corresponding control and target qubits at Level m − 1. Figure 12 shows a fault-tolerant

implementation of the CNOT gate. Gates that can be performed transversally also include

the single qubit Pauli gates. The H gate is transversal modulo a π rotation of the 3× 3 array

along the diagonal of the array, i.e. a relabelling of the qubits qij ↔ qji. Figure 12 also shows

how to do measurement.

The S gate can be implemented using the circuit in Figure 13. It uses an ancilla in the

state |+i〉 = |0〉+i|1〉√
2

as a resource to generate the required gate. In turn, an encoded |+i〉
state at any level of concatenation can be obtained via the injection circuit in Figure 14, which

basically teleports an arbitrary lower-level state, in this case |+i〉, into an encoded state |+i〉
at the cost of decoding (via D) an encoded Bell pair. Moreover, since the injection circuit is

not fault-tolerant, a higher fidelity |+i〉 has to be distilled via multiple successful rounds of

the circuit in Figure 16.

In order to have a universal gate set, we also need the π/8 gate called the T gate. A

fault-tolerant version of this gate cannot be constructed transversally. A fault-tolerant T gate

is shown in Figure 18. This gate sequence was originally constructed in [31] using one-bit
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Fig. 12. Fault-tolerant implementation of the CNOT gate (on the left), the single qubit gates X,
Y , Z and H (top right corner), and Z basis measurement (bottom right).

|ψ〉 • • eiπ/4S|ψ〉

|+i〉 !"#$%&'( • |+i〉

|Ψ〉 |Ψ〉S|Ψ〉

Z

Fig. 13. Implementation of the S gate via the use of the |+i〉 resource ancilla.

|+ i〉 • ! •

|q2〉 P|+〉 • D ⊕ ! •

|q3〉 P|0〉 ⊕ X Z |+i〉

Fig. 14. Injection of an arbitrary encoded state. In this figure the injection of the |+i〉 state is
shown.

teleportation. The gate sequence teleports the state |ψ〉 from the data block to the ancilla and

applies the T gate to the state. The ancilla state T |+〉 is prepared using the state injection

method described before, followed by several successful rounds of the distillation circuit shown

in Figures 16 and 19.

To correct errors during the computation, one uses the circuit depicted in Figure 21. This

circuit corrects Z and X errors independently. In essence, the circuit extracts the measure-

ment outcomes of the X and Z type gauge operators independently, and with various classical

parity operations on the measurement outcomes it is possible to construct the recovery pro-

cedure RX or RZ . This is detailed in Ref. [31]

Note that the error detection operation denoted ED differs from the error correction EC
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|Ψ〉

D

|Ψ〉

Fig. 15. Decoder circuit D from level s to level s−1. Injecting a state at level m requires a decoder

from level m to level 0.

twirl • ⊕

twirl Z • !

|+i〉

|+i〉

|+i〉

Fig. 16. Distillation process for |+i〉 states. The process is successful when the measure outcome
is a 0. If it is a 1, the process must be restarted and the states discarded.

|+〉 ! •

|q2〉 Y|+i〉 |+i〉

Fig. 17. Twirl gate for the |+i〉 state shown in the |+i〉 distillation circuit.

|Ψ〉 ⊕ ! •

|A〉 T |+〉 • S EC T |Ψ〉

Fig. 18. Implementation of a T gate using as resource ancilla the state T |+〉. This state is injected

with the circuit in Fig.14. The distillation and twirl procedures are different that those of the |+i〉
state.

depicted in Figure 21 by removing the two error-correction operations RX and RZ .
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twirl • • • • • • • !

twirl • • • • • • • !

twirl ⊕ ⊕ • • • • • •

twirl • • • • • • • !

twirl ⊕ ⊕ ⊕ !

twirl ⊕ ⊕ ⊕ !

twirl ⊕ ⊕ ⊕ !

twirl • • • • • • • !

twirl ⊕ ⊕ ⊕ !

twirl ⊕ ⊕ ⊕ !

twirl ⊕ ⊕ ⊕ !

twirl ⊕ ⊕ ⊕ !

twirl ⊕ ⊕ ⊕ !

twirl ⊕ ⊕ ⊕ !

twirl ⊕ ⊕ ⊕ ⊕ ⊕ !

T |+〉

T |+〉

T |+〉

T |+〉

T |+〉

T |+〉

T |+〉

T |+〉

T |+〉

T |+〉

T |+〉

T |+〉

T |+〉

T |+〉

T |+〉

T |+〉

Fig. 19. Distillation circuit for the T |+〉.

|+〉 ! •

|q2〉 SX|+i〉T |+〉 T |+〉

Fig. 20. Twirl operation for the T |+〉 state.

7.2 Resources with m Levels of Concatenation

Here we estimate the resources needed to perform a single logical gate at Level m of concate-

nation. Specifically, we calculate the number of Level 0 gates, the total number of ancillas

used during the computation, and the total gate time taking parallelization into account. As

a general rule we shall take into account the presence of the input and output error-correction
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Fig. 21. Illustration of the Steane-EC syndrome extraction method.

routines inserted in any gate, and this should be understood for every circuit shown above. For

example, gate U(m) at level m is implemented as the sequence EC(m)|inputsU(m)EC(m)|outputs.

Moreover, when one has multiple gates in action A(m)B(m)... each gate is assumed to be of

the above form, i.e., (EC(m)|inputsA(m)EC(m)|outputs)(EC(m)|inputsB(m)EC(m)|outputs).... Since

EC routines acting back-to-back are only detrimental, i.e. same correction effect but using

more gates, they can be contracted yielding EC(m)A(m)EC(m)B(m)EC(m).... While this con-

traction process can be executed for every level of concatenation below the one analyzed in

order to reduce the number of gates, here we opt to contract only at the analyzed level.

Measurements only have input EC routines, while preparations typically have only output EC
routines. Furthermore, we will account for the fact that the two-qubit interactions must be

nearest-neighbor only, and our resource estimation counts the necessary SWAP gates.



28 Estimating the Resources for Quantum Computation with the QuRE Toolbox

7.2.1 Physical Layout of Qubits

In order to appropriately quantify the resources required, we describe the physical layout

being used. We use the tile structure used in Ref. [12], designed to minimize the amount

of SWAP operations used during error-correction routines, and thus preserve a high error

threshold. Extra qubits are placed, labelled by a, in order to account for nearest neighbour

only interactions in the following fashion

a a a a a a a
a q11 a q12 a q13 a
a a a a a a a
a q21 a q22 a q23 a
a a a a a a a
a q31 a q32 a q33 a
a a a a a a a

(16)

For details on the exact gate sequences being used we refer the reader to the original paper [12].

The threshold obtained for this layout, and the corresponding circuits implementing the error-

correction subroutines, is pth = 1.3× 10−5.

7.2.2 Ancilla Factory

We will use what is known as the ancilla factory model, in which sections of the computer are

devoted exclusively to producing and distilling the special ancillas required to implement the T

and S gates at the highest level of concatenation. At this stage, we assume that all distillation

rounds are successful while recognizing that the distillation process is a probabilistic process.

Accounting for the probabilistic character of the distillation process can be done once the

success rate and target fidelity of the distilled states are fixed, on a case by case basis. This

finer analysis is not done in this report.

In order to determine how many successful distillation rounds are required, we take into

account the error rate of the physical-level input state and physical gate error rates (bounded

by p(0)) to compute the output error rate after r successful rounds of distillation. The rmax
for which the output error rate is below the error rate of Clifford gates at the highest level of

concatenation L, given by the well known equation [2], p(L) = pth

(
p(0)/pth

)2L
, is the one we

use in our simulations. We find that rmax = 5 and rmax = 3 distillation rounds are required

for T |+〉 and |+i〉 ancillas respectively.

7.2.3 The Recursive Relations

We express these resources for a single logical gate at Level m:

Fault-Tolerant Measurements

Measurement in the Z-basis:

(17a)ops(MZ(m)) = 9MZ(m−1) + EC(m)

(17b)time(MZ(m)) = MZ(m−1) + EC(m)
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Measurement in the X-basis:

(18a)ops(MX(m)) = 9MX(m−1) + EC(m)

(18b)time(MX(m)) = MX(m−1) + EC(m)

Fault-Tolerant |0〉 and |+〉 Preparation

Preparation of |0〉 states:

(19a)ops(P|0〉(m)) = 24P|0〉(m−1) + 12P|+〉(m−1) + 51CNOT(m−1) + EC(m)

(19b)
time(P|0〉(m)) = max(P|0〉(m−1), P|+〉(m−1)) + max(P|0〉(m−1), CNOT(m−1))

+CNOT(m−1) + max(MZ(m−1), CNOT(m−1)) + max(P|0〉(m−1), SWAP(m−1))

+ 2SWAP(m−1) + CNOT(m−1) +MX(m−1) + EC(m)

Preparation of |+〉 states:

(20a)ops(P|+〉(m)) = 24P|+〉(m−1)
+ 12P|0〉(m−1)

+ 51CNOT
(m−1)

+ EC(m)

(20b)
time(P|+〉(m)) = max(P|0〉(m−1), P|+〉(m−1)) + max(P|0〉(m−1), CNOT(m−1))

+CNOT(m−1) + max(MZ(m−1), CNOT(m−1)) + max(P|0〉(m−1), SWAP(m−1))

+ 2SWAP(m−1) + CNOT (m− 1) +MX(m−1) + EC(m)

Fault-Tolerant Pauli Gates

Fault-tolerant implementation of the X gate:

(21a)ops(X(m)) = 3X(m−1) + EC(m)

(21b)time(X(m)) = X(m−1) + EC(m)

Fault-tolerant implementation of the Z gate:

(22a)ops(Z(m)) = 3Z(m−1) + EC(m)

(22b)time(Z(m)) = Z(m−1) + EC(m)

CNOT Gates

Fault-tolerant implementation of the CNOT gate (horizontal and vertical):

(23a)ops(CNOT(m)) = 9CNOT(m−1) + 144SWAP (m− 1) + EC(m)

(23b)time(X(m)) = CNOT(m−1) + 8SWAP(m−1) + EC(m)
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Fault-Tolerant H Gate

Fault-tolerant implementation of the H gate:

(24a)ops(H(m)) = 9H(m−1) + 40vSWAP(m−1) + 2EC(m)

(24b)time(H(m)) = H(m−1) + 40SWAP(m−1) + 3EC(m)

SWAP Operation

The swap operations hSWAP(m) and vSWAP(m) swaps one of the 28 sub-blocks inside a

single m-th level block with another of the 28 sub-blocks that is adjacent on the right/left

and top/bottom respectively:

(25a)ops(hSWAP(m)) = 144SWAP(m−1) + EC(m)

(25b)ops(vSWAP(m)) = 144SWAP(m−1) + EC(m)

(25c)time(hSWAP(m)) = 8SWAP(m−1) + EC(m)

(25d)time(vSWAP(m)) = 8SWAP(m−1) + EC(m)

Error Detection and Correction with Steane-EC-type syndrome extraction

A fault-tolerant implementation of quantum error-correcting protocol for a single logical code

block :

(26a)ops(EC(m)) = 9P|+〉(m−1) + 9P|0〉(m−1) + 29CNOT(m−1)

+ 9MX(m−1) + 9MZ(m−1) + 12SWAP(m) +X(m−1) + Z(m−1)

(26b)

time(EC(m)) = max(P|+〉(m−1)P|0〉(m−1))

+max(P|+〉(m−1), P|0〉(m−1), CNOT(m−1))+max(SWAP(m−1), CNOT(m−1))

+ max(SWAP(m−1), CNOT(m−1),MX(m−1))

+ max(hSWAP(m−1), CNOT(m−1),MX(m−1),MZ(m−1))

+ max(CNOT(m−1),MX(m−1),MZ(m−1))

+MX(m−1) + max(X(m−1), Z(m−1))

Error detection for a single logical code block:

(27a)ops(ED(m)) = 9P|+〉(m−1) + 9P|0〉(m−1) + 29CNOT(m−1)

+ 9MX(m−1) + 9MZ(m−1) + 12SWAP(m)

(27b)

time(ED(m)) = max(P|+〉(m−1)P|0〉(m−1))

+max(P|+〉(m−1), P|0〉(m−1), CNOT(m−1))+max(SWAP(m−1), CNOT(m−1))

+ max(SWAP(m−1), CNOT(m−1),MX(m−1))

+ max(SWAP(m−1), CNOT(m−1),MX(m−1),MZ(m−1))

+ max(CNOT(m−1),MX(m−1),MZ(m−1)) +MX(m−1)
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In order to complete a universal gate set we are missing a fault-tolerant implementation of

the S and T gates. The implementation these gates both require special resource ancillas. Let

us first do the counting for the circuits implementing the gates assuming the corresponding

ancilla is provided.

Fault-Tolerant S

Fault-tolerant implementation of the S gate:

(28a)ops(S(m)) = P|+i〉(m) + CNOT(m) + CPHASE(m)

(28b)time(S(m)) = P|+i〉(m) + CNOT(m) + CPHASE(m)

Here CPHASE(m) denotes the control phase gate. This two-qubit gate can be obtained con-

jugating a CNOT gate with a Hadamard gate acting on the target of the CNOT gate.

Fault-Tolerant T

Fault-tolerant implementation of the T gate:

(29a)ops(T(m)) = PT |+〉,(m) + CNOT(m) +MZ(m) + S(m)

(29b)time(T(m)) = PT |+〉,(m) + CNOT(m) +MZ(m) + S(m)

where T |+〉 = Rz(π/8) |+〉.

Both states can be injected via the circuit in Figure 14. The gate count for such circuit is as

follows:

Injection circuit for a state |Ψ〉
Implementation of the |Ψ〉 injection circuit:

(30a)
ops(InjΨ) = P|+〉,(m) + P|0〉,(m) + P|Ψ〉,(0) + CNOT(m)

+D(m,0) +MZ(0) +MX(0) +X(m) + Z(m)

(30b)
time(InjΨ) = max(P|+〉,(m), P|0〉,(m), P|Ψ〉,(0)) + CNOT(m) +D(m,0)

+ CNOT(0) + max(MZ(0),MX(0)) +X(m) + Z(m)

Decoder circuit D(m,0)

Such circuit can be implemented in a level-by level fashion, namely:

D(m,0) = D(1,0)...D(m−1,m−2)D(m,m−1).

Implementation of the D(s,s−1) gate:

(31a)ops(D(s,s−1)) = 8CNOT(s−1) + 2MZ(s−1) + 6MX(s−1)

(31b)time(D(s,s−1)) = 3CNOT(s−1) + max(MZ(s−1),MX(s−1))
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Since the injection circuit is not fault-tolerant, one must further improve the quality of

the injected states by a distillation process. Higher fidelity resource states are obtained con-

ditioned of successful distillation procedures. Here we do the gate count of a single distillation

step for each of the two resource states.

Distillation circuits for |+i〉 and T |+〉
This circuit assumes the input of noisy ancillas obtained via Inj|+i〉,(m), and thus we do not

count this gate as part of the circuit.

Implementation of the Dist|+i〉,(m) circuit:

(32a)ops(Dist|+i〉,(m)) = 2 (twirl − |+i〉)(m) + CPHASE(m) + CNOT(m) +MX(m)

(32b)time(Dist|+i〉,(m)) = (twirl − |+i〉)(m) + CPHASE(m) + CNOT(m) +MX(m)

Implementation of the (twirl − |+i〉)(m) circuit:

(33a)ops((twirl − |+i〉)(m)) = MZ(0) + Y(m)

(33b)time(Dist|+i〉,(m)) = MZ(m) + Y(m)

where Y = iXZ.

This circuit assumes the input of noisy ancillas obtained via InjT |+〉,(m), and thus we do not

count this gate as part of the circuit.

Implementation of the DistT |+〉,(m) circuit:

(34a)ops(DistT |+〉,(m)) = 15 (twirl − T |+〉)(m) + 32CNOT(m) + 14MX(m)

(34b)time(DistT |+〉,(m)) = (twirl − T |+〉)(m) + 21CNOT(m) +MX(m)

Implementation of the (twirl − T |+〉)(m) circuit:

(35a)ops((twirl − |+i〉)(m)) = MZ(0) + S(m) +X(m)

(35b)time(Dist|+i〉,(m)) = MZ(m) + S(m) +X(m)

With these recursive relations, the resource count can be carried out.

8 Error Correction with the Knill’s Post-Selection Scheme

Now we analyze the resource estimates of the quantum computer using the Knill’s post-

selection scheme [32,33]. More details can be found in [34]. The Knill’s post-selection scheme

concatenates (L − 1) levels of an error-detecting code Ced with an error-correcting code Cec
at the top-level. We use Cmed to denote the Level-m encoding of the Ced code.
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8.1 The Knill’s Post-Selection Scheme

The error-detecting code Ced is the [4, 2, 2] code with a stabilizer group generated by XXXX

and ZZZZ. This quantum code encodes two logical qubits and can simultaneously detect

any single qubit X error and any single qubit Z error. In the Knill’s scheme, we use only one

of the logical qubits and treat the other as a spectator qubit. The logical operators are

XL = XXII,

ZL = ZIZI,

XS = IXIX,

ZS = IIZZ,

where L and S are labels for the logical and the spectator qubits, respectively. Thus

Y L = iXLZL = Y XZI.

The state
∣∣0〉

L
|+〉S and |+〉L

∣∣0〉
S

correspond to the logical
∣∣0〉 and logical |+〉, respectively.

These states can be fault-tolerantly prepared by the circuits in Figure 22.

To perform fault-tolerant error detection (ED) of Cmed, the circuits in Figure 23 are used

depending on the state of the spectator qubit. We choose ED0 or ED+ when the spectator

qubit is |+〉S or |0〉S , respectively. Thus the state of the spectator qubit alternates between

|+〉S and |0〉S after each error detection block. According to [32, 33], the ED0 gate is better

suited for detecting Z errors, while the ED+ gate is better suited for detecting X errors.

If there are no errors detected, the measurement outcomes of the the first two code blocks

determines the logical Pauli operator that need to be applied to the second ancilla block to

complete the teleportation (this is not shown in Figure 23).

P|0〉

|+〉 •

|+〉 •

|0〉 ⊕

|0〉 ⊕

|0〉L|+ 〉S

|+〉 •

|0〉 ⊕

|+〉 •

|0〉 ⊕

|+ 〉L|0〉SP|+〉

Fig. 22. Fault-tolerant preparation of the logical states
∣∣0〉 and

∣∣+〉.
The top-level error-correcting code Cec can be the Steane code or the Bacon-Shor code,

and we choose the Steane code in this work. The logical |0〉 of the concatenation of Cmed and

Cec is generated by the circuit in Figure 24. If an error is detected at any error detection step

at any level of concatenation, the preparation of the
∣∣Φ0

〉
should be restarted. We use Knill’s

syndrome extraction method shown in Figure 25 at the top-level of concatenation.

The logical CNOT gate between different code blocks can be done transversally by ap-

plying bitwise CNOT gates. The SWAP of qubits 2 and 3 implements the SWAP of the

logical qubit and the spectator qubit. We call this the inner SWAP , which is different from

the outer SWAP between two code blocks. The logical Hadamard gate is implemented by

transversally applying the Hadamard gates, followed by an inner SWAP . The inner SWAP
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|ΨL〉 / • ! •

|0L〉|+S〉 / ⊕⊕ ! •

|+L〉|0S〉 / • R |Ψ〉L|0〉SDiscard if ≠ 0

Par.

Par.|0〉L|+〉S

|+〉L|0〉S

|Ψ〉L

|ΨL〉 / • ! •

|+L〉|0S〉 / • ⊕ ! •

|0L〉|+S〉 / ⊕ R

Par.

Par.

Discard if ≠ 0 |Ψ〉L|+〉S

|+〉L|0〉S

|0〉L|+〉S

|Ψ〉L

Fig. 23. Circuits for fault-tolerant quantum error detection. Top: ED0. Bottom: ED+.

does not need to be applied. Instead, we switch the labels of the qubits and keep track of

them. We assume this can be done efficiently.

To achieve universal quantum computation with the Knill’s post-selection scheme, it re-

mains to prepare the the +1 eigenstate of Y
∣∣+i〉 = 1√

2

(∣∣0〉+ i
∣∣1〉) and the magic state

T |+〉 at level-(L− 1). We use the ancilla factory of the Bacon-Shor code as described in the

previous section. The only difference is the decoding operation in the injection circuit, which

is shown in Figure 26 for the C4 code.

8.2 The Qubit Layout of the C4 Code

Herein we describe the physcial qubit layout for the Knill’s post-selection scheme and estimate

the number of physical gate operations and time required for each logical operation. As in the

previous sections, a gate operation at level m is followed by an error-correction (detection)

routine at level m.
Following the tile structures presented in [12, 35], we design a 2-dimensional 5× 5 lattice

architecture of physical qubits to represent a logical qubit of the C4 code. A tile is initialized
as one of the following two structures:

Structure I :



O O O O O

O d1 O O d3

O O O O O

O O O O O

O d2 O O d4

 ,

Structure II :



O O O O O

O O O O O

O O d1 d3 O

O O d2 d4 O

O O O O O

 .
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|q1〉 / • • •

|q2〉 / • • •

|q3〉 / ⊕ ⊕

|q4〉 / • • •

|q5〉 / ⊕ ⊕

|q6〉 / ⊕ ⊕

|q7〉 / ⊕ ⊕ ⊕

ED
0

ED
0

ED
0

ED
0

ED
0

ED
0

ED
0

ED
0

ED
0

ED
0

ED
0

ED
0

ED
0

ED
0

ED
+

ED
+

ED
+

ED
+

ED
+

ED
+

ED
+

ED
+

ED
+

ED
+

ED
+

ED
+

ED
+

ED
+

|0〉
C
EC

C
ED

C
ED

C
ED

C
ED

C
ED

C
ED

C
ED

Fig. 24. Preparation of Cec encoded logical state
∣∣0〉 using Ced code blocks.

|Q〉 • ! •

|A〉 P|+〉 • ⊕ ! •

|B〉 P|0〉 ⊕ Z X

Preparing |Φ0〉

Fig. 25. Circuit for the Knill syndrome extraction.

The four data qubits of the C4 code are denoted by d1, d2, d3, and d4. The O’s are dummy

qubits used for swapping with the data or ancilla qubits in communication or for the ancilla

preparation and their states are irrelevant to computation. Each qubit in the tile is encoded

in a lower-level tile structure.

We have the following operations of the C4 code:

1. Error detection (ED)

2. horizontal and vertical CNOT gates (hCNOT/vCNOT)

3. horizontal and vertical SWAP gates (hSWAP/vSWAP)

4. Measurement in the X basis or the Z basis (MX and MZ)

5. The Pauli operators X, Y , Z, and the Hadamard gate (H)
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L S L S 

Fig. 26. The decoding circuit for Ced.

6. Preparation of the ancilla qubits |+〉 or |0〉 (P|+〉 and P|0〉)

7. The phase gate S and the π/8 gate T

For simplicity, all lower-level gates are assumed to take one time step, which is the longest

execution time among all gates. In reality, we may think that a qubit idles for the rest of

the time step after it passes a fast gate and the error rate of this operation is the physical

gate error rate plus the memory error rate for the idle time. We try to optimize the gate

operations in the numbers of SWAPs, idle qubits, and time steps.

Detailed illustration of the movement and operations inside the tile is shown in Appendix

17.1. Let ops(Gate(m)) denote the gate operation of the concatenated code at level m (m− 1

levels of Ced and one level of Cec), and ops(GateC4

(m)) denote the gate operation of the C4 code

at level m. Similarly for time(Gate(m))) and time(GateC4

(m))).

8.2.1 ErrorDetection

We first consider the error detection circuit ED+ in Figure 23. ED0 behaves in the same way.

(36a)
ops(EDC4

(m)) = 4PC4

|0〉(m−1) + 4PC4

|+〉(m−1) + 6vCNOTC4

(m−1) + 6hCNOTC4

(m−1)

+ 4MC4

Z(m−1) + 4MC4

X(m−1) + 4vSWAPC4

(m−1) + 4hSWAPC4

(m−1)

(36b)

time(EDC4

( m)) = max(PC4

|0〉(m−1), P
C4

|+〉(m−1))

+ max(MC4

X(m−1),M
C4

Z(m−1)) + vCNOTC4

(m−1) + hCNOTC4

(m−1)

+ max(vCNOTC4

(m−1), hCNOT
C4

(m−1)) + vSWAPC4

(m−1) + hSWAPC4

(m−1)

We find the operation and time of ED0 are the same as those of ED+ and we omit the

subscripts 0 or +.

8.2.2 Fault-Tolerant Horizontal and Vertical CNOT Gate

(37a)ops(vCNOTC4

(m)) = 4hCNOTC4

(m−1) + 8hSWAPC4

(m−1) + 40vSWAPC4

(m−1) + 2EDC4

(m)

(37b)
time(vCNOTC4

(m)) = hCNOTC4

(m−1) + 4vSWAPC4

(m−1)

+ 2 max(vSWAPC4

(m−1), hSWAPC4

(m−1)) + EDC4

(m)

(37c)ops(hCNOTC4

(m)) = 4vCNOTC4

(m−1) + 8vSWAPC4

(m−1) + 40hSWAPC4

(m−1) + 2EDC4

(m)
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(37d)
time(hCNOTC4

( m)) = vCNOTC4

(m−1) + 4hSWAPC4

(m−1)

+ 2 max(vSWAPC4

(m−1), hSWAPC4

(m−1)) + EDC4

(m)

8.2.3 Fault-Tolerant Horizontal and Vertical SWAP Gate

For a SWAP operation to be fault-tolerant, we only swap a data or ancilla qubit with a

dummy qubit.

Suppose SWAP(0) is the swap of two physical qubits on any two adjacent qubits (hori-

zontal or vertical). Since we only swap a data or ancilla qubit with a dummy qubit, only one

tile is followed by error correction.

(38a)ops(vSWAPC4

(m)) = 20vSWAPC4

(m−1) + EDC4

(m)

(38b)time(vSWAPC4

(m)) = 5vSWAPC4

(m−1) + EDC4

(m)

Similarly for hSWAP :

(39a)ops(hSWAPC4

(m)) = 20hSWAPC4

(m−1) + EDC4

(m)

(39b)time(hSWAPC4

(m)) = 5hSWAPC4

(m−1) + EDC4

(m)

8.2.4 Fault-Tolerant Measurements

Measurement in the X-basis:

(40a)ops(MC4

X(m)) = 4MC4

X(m−1) + EDC4

(m) = 4mMC4

X(0) + EDC4

(m)

(40b)time(MC4

X(m)) = MC4

X(0) + EDC4

(m)

Similarly for measurement in the Z-basis:

(41a)ops(MC4

Z(m)) = 4MC4

Z(m−1) = 4mMC4

Z(0) + EDC4

(m)

(41b)time(MC4

Z(m)) = MC4

Z(0) + EDC4

(m)

8.2.5 Fault-Tolerant Pauli Gates and Hadamard

Fault-tolerant implementation of the X gate:

(42a)ops(XC4

(m)) = 2XC4

(m−1) + EDC4

(m) = 2mXC4

(0) + EDC4

(m)

(42b)time(XC4

(m)) = XC4

(0) + EDC4

(m)

Fault-tolerant implementation of the Z gate:

(43a)ops(ZC4

(m)) = 2ZC4

(m−1) + EDC4

(m) = 2mZC4

(0) + EDC4

(m)
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(43b)time(ZC4

(m)) = ZC4

(0) + EDC4

(m)

Fault-tolerant implementation of the Y gate:

(44a)

ops(Y C4

(m)) = XC4

(m−1) + ZC4

(m−1) + Y C4

(m−1) + EDC4

(m)

= 2m−1(XC4

(0) + ZC4

(0)) + Y C4

(m−1) + EDC4

(m)

= (2m − 1) (XC4

(0) + ZC4

(0)) + Y C4

(0) + EDC4

(m)

(44b)time(Y C4

(m)) = Y C4

(0) + EDC4

(m)

Fault-tolerant implementation of the H gate:

(45a)ops(HC4

(m)) = 4HC4

(m−1) + EDC4

(m) = 4mHC4

(0) + EDC4

(m)

(45b)time(HC4

(m)) = HC4

(0) + EDC4

(m)

8.2.6 Fault-Tolerant Preparation of Logical States P|0〉andP|+〉

(46a)
ops(PC4

|0〉(m)) = 2PC4

|0〉(m−1) + 2PC4

|+〉(m−1) + 2hCNOTC4

(m−1)

+ 4hSWAPC4

(m−1) + EDC4

(m)

(46b)
time(PC4

|0〉(m)) = max(PC4

|+〉(m−1), P
C4

|0〉(m−1)) + hCNOTC4

(m−1)

+ hSWAPC4

(m−1) + EDC4

(m)

(47a)
ops(PC4

|+〉(m)) = 2PC4

|0〉(m−1) + 2PC4

|+〉(m−1) + 2vCNOTC4

(m−1)

+ 4vSWAPC4

(m−1) + EDC4

(m)

(47b)
time(PC4

|+〉(m)) = max(PC4

|+〉(m−1), P
C4

|0〉(m−1)) + vCNOTC4

(m−1)

+ vSWAPC4

(m−1) + EDC4

(m)

8.2.7 Fault-Tolerant S and T Gates

For universal quantum computation, we have to include the implementation of S gate and

T gate. These two encoded gates of the C4 code cannot be fault-tolerantly prepared and we

adopt the ancilla factory method as in the previous section. The only difference between the

ancilla factories of the Bacon-Shor code and the C4 code is the decoding circuit as shown in

Figure 26. The state of the spectator qubit determines which one of the two decoding circuits

is applied. We use the circuit recursively to decode a logical state at level 0 from a logical

state at level m. Since only the information matters, we don’t have to swap the qubits back

to its original locations.
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(48a)
ops(decC4

|0〉(m)) = decC4

|0〉(m−1) + 2hCNOTC4

(m−1)

+ vCNOTC4

(m−1) + 4hSWAPC4

(m−1) + 2vSWAPC4

(m−1)

(48b)
time(decC4

|0〉(m)) = decC4

|0〉(m−1) + hCNOTC4

(m−1)

+ vCNOTC4

(m−1) + vSWAPC4

(m−1) + hSWAPC4

(m−1)

(49a)
ops(decC4

|+〉(m)) = decC4

|+〉(m−1) + 2vCNOTC4

(m−1)

+ hCNOTC4

(m−1) + 4vSWAPC4

(m−1) + 2hSWAPC4

(m−1)

(49b)
time(decC4

|+〉(m)) = decC4

|+〉(m−1) + vCNOTC4

(m−1)

+ hCNOTC4

(m−1) + hSWAPC4

(m−1) + vSWAPC4

(m−1)

Now assume the |+i〉 and T |+〉 can be efficiently prepared and transported to the destination.

(50a)ops(SC4

(m)) = 4hSWAPC4

(m−1) + 20vSWAPC4

(m−1) + 8hCNOTC4

(m−1) + 2HC4

(m)

(50b)time(SC4

(m)) = hSWAPC4

(m−1) + 5vSWAPC4

(m−1) + 2hCNOTC4

(m−1) + 2HC4

(m)

Note that an error correction follows the last H gates.

(51a)ops(TC4

(m)) = 8hSWAPC4

(m−1) + 20vSWAPC4

(m−1) + 4hCNOTC4

(m−1) +MC4

Z(m) + SC4

(m)

(51b)time(TC4

(m)) = 2hSWAPC4

(m−1) + 5vSWAPC4

(m−1) + hCNOTC4

(m) +MC4

Z(m) + SC4

(m)

Note that an error correction follows the S gate.

Remark: It is possible to combine a gate operation with the error correction and save

several time steps.

8.3 Resources with the Concatenation Code

Here we estimate the resources needed to perform a single logical gate in the concatenation

of the Steane code with (L− 1) levels of the C4 code. We apply the recursive relations of the

Steane code but with the lower-level gate operations of the concatenated C4 code.

Fault-Tolerant Measurements

Measurement in the Z-basis:

(52a)ops(MZ(L)) = 7MC4

Z(L−1) + EC(L)

(52b)time(MZ(L)) = MC4

Z(L−1) + EC(L)

Measurement in the X-basis:

(53a)ops(MX(L)) = 7MC4

X(L−1) + EC(L)
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(53b)time(MX(L)) = MC4

X(L−1) + EC(L)

Fault-Tolerant Pauli Gates, H Gates

Fault-tolerant implementation of the X gate:

(54a)ops(X(L)) = 7XC4

(L−1) + EC(L)

(54b)time(X(L)) = XC4

(L−1) + EC(L)

Fault-tolerant implementation of the Z gate:

(55a)ops(Z(L)) = 7ZC4

(L−1) + EC(L)

(55b)time(Z(L)) = ZC4

(L−1) + EC(L)

Fault-tolerant implementation of the Y gate:

(56a)ops(Y(L)) = 7Y C4

(L−1) + EC(L)

(56b)time(Y(L)) = Y C4

(L−1) + EC(L)

Fault-tolerant implementation of the H gate:

(57a)ops(H(L)) = 7HC4

(L−1) + EC(L)

(57b)time(H(L)) = HC4

(L−1) + EC(L)

S and T gates

(58a)
ops(S(L)) = P|0〉(L) + 28SC4

(L−1) + 2Pcat(L) + 14vCNOTC4

(L−1)

+ 7hCNOTC4

(L−1) + 2MX(L) +MZ(L) + EC(L)

(58b)
time(S(L)) = max((P|0〉(L) + SC4

(L−1)), Pcat(L)) + max(SC4

(L−1), Pcat(L))

+ 2vCNOTC4

(L−1) + hCNOTC4

(L−1) + 2 max(SC4

(L−1),M
C4

X(L−1)) +MZ(L) + EC(L)

(58c)
ops(T(L)) = P|0〉(L) + 28SC4

(L−1) + 2Pcat(L) + 14vCNOTC4

(L−1)

+ 7hCNOTC4

(L−1) + 2MX(L) +MZ(L) + EC(L)

(58d)
time(T(L)) = max((P|0〉(L) + TC4

(L−1)), Pcat(L)) + max(TC4

(L−1), Pcat(L))

+ 2hCNOTC4

(L−1) + hCNOTC4

(L−1) + 2 max(TC4

(L−1),M
C4

X(L−1)) +MZ(L) + EC(L)
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Fault-tolerant implementation of the CNOT gate:

(59a)ops(hCNOT(L)) = 7hCNOTC4

(L−1) + 112hSWAPC4

(L−1) + 14vSWAPC4

(L−1) + 2EC(L)

(59b)

time(hCNOT(L)) = max(hSWAPC4

(L−1), vSWAPC4

(L−1))

+ 6hSWAPC4

(L−1) + vCNOTC4

(L−1)

+ max(PC4

|+〉(L−1), P
C4

|0〉(L−1), hSWAPC4

(L−1))

+ max(PC4

|+〉(L−1), P
C4

|0〉(L−1), hCNOT
C4

(L−1),

vCNOTC4

(L−1), hSWAPC4

(L−1)) + max(PC4

|+〉(L−1), P
C4

|0〉(L−1))

+ max(PC4

|+〉(L−1), P
C4

|0〉(L−1), hCNOT
C4

(L−1), vCNOT
C4

(L−1))

+ 2 max(hSWAPC4

(L−1), vSWAPC4

(L−1), vCNOT
C4

(L−1), P
C4

|0〉(L−1))

+ 2 max(hSWAPC4

(L−1) + hCNOTC4

(L−1), vCNOT
C4

(L−1))

+ 2 max(hSWAPC4

(L−1), hCNOT
C4

(L−1))

+ 2 max(hSWAPC4

(L−1), vSWAPC4

(L−1), hCNOT
C4

(L−1),M
C4

X(L−1))

+ 2 max(hSWAPC4

(L−1), vSWAPC4

(L−1),M
C4

X(L−1))

+ 2vCNOTC4

(L−1) + 2MC4

X(L−1)

(59c)ops(vCNOT(L)) = 7vCNOTC4

(L−1) + 70vSWAPC4

(L−1) + 12hSWAPC4

(L−1) + 2EC(L)

(59d)

time(vCNOT(L)) = max(vSWAPC4

(L−1)hSWAPC4

(L−1))

+ 2 max(vSWAPC4

(L−1)vCNOT
C4

(L−1)) + 4 ∗ vSWAPC4

(L−1)

+ max(PC4

|+〉(L−1)P
C4

|0〉(L−1)hSWAPC4

(L−1)vSWAPC4

(L−1))

+ max(PC4

|+〉(L−1)P
C4

|0〉(L−1)hCNOT
C4

(L−1)

vCNOTC4

(L−1)hSWAPC4

(L−1)) + max(PC4

|+〉(L−1)P
C4

|0〉(L−1))

+ max(PC4

|+〉(L−1)P
C4

|0〉(L−1)hCNOT
C4

(L−1)vCNOT
C4

(L−1))

+ 2 max(hSWAPC4

(L−1)vSWAPC4

(L−1)vCNOT
C4

(L−1)P
C4

|0〉(L−1))

+ 2 max(hSWAPC4

(L−1) + hCNOTC4

(L−1)vCNOT
C4

(L−1))

+ 2 max(hSWAPC4

(L−1)hCNOT
C4

(L−1))

+ 2 max(hSWAPC4

(L−1)vSWAPC4

(L−1)hCNOT
C4

(L−1)M
C4

X(L−1))

+ 2 max(hSWAPC4

(L−1)vSWAPC4

(L−1)M
C4

X(L−1))

+ 2vCNOTC4

(L−1) + 2MC4

X(L−1)

SWAP Operation

We swap two logical qubits at the top level of the Steane code and thus we need two error-

correction blocks at this level. Notice that we do not swap a data or ancilla qubit with a

dummy qubit at a lower level.
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(60a)ops(hSWAP(L)) = 112hSWAPC4

(L−1) + 14vSWAPC4

(L−1) + 2EC(L)

(60b)time(hSWAP(L)) = 8hSWAPC4

(L−1) + 2vSWAPC4

(L−1) + EC(L)

(60c)ops(vSWAP(L)) = 84vSWAPC4

(L−1) + 14hSWAPC4

(L−1) + 2EC(L)

(60d)time(vSWAP(L)) = 6vSWAPC4

(L−1) + 2hSWAPC4

(L−1) + EC(L)

Fault-Tolerant Preparation of a Logical State

The detailed tile operations are given in Appendix 18.

(61a)
ops(P|0〉(L)) = 4PC4

|0〉(L−1) + 3PC4

|+〉(L−1) + 4hCNOTC4

(L−1)

+ 5vCNOTC4

(L−1) + 9hSWAPC4

(L−1) + 13vSWAPC4

(L−1)

(61b)

time(P|0〉(L)) = max(PC4

|+〉(L−1), P
C4

|0〉(L−1))

+ max(hCNOTC4

|+〉(L−1), vCNOT
C4

|0〉(L−1)) + hCNOTC4

(L−1)

+ 2 max(vCNOTC4

|+〉(L−1), hSWAPC4

|0〉(L−1), vSWAPC4

|0〉(L−1))

+ 3 max(hSWAPC4

|0〉(L−1), vSWAPC4

|0〉(L−1)) + hSWAPC4

|+〉(L−1)

The tile operations of preparation of the logical state |+〉 are omitted.

(62a)
ops(P|+〉(L)) = 3PC4

|0〉(L−1) + 4PC4

|+〉(L−1) + 4hCNOTC4

(L−1)

+ 5vCNOTC4

(L−1) + 9hSWAPC4

(L−1) + 13vSWAPC4

(L−1)

(62b)

time(P|+〉(L)) = max(PC4

|+〉(L−1), P
C4

|0〉(L−1))

+ max(hCNOTC4

|+〉(L−1), vCNOT
C4

|0〉(L−1)) + hCNOTC4

(L−1)

+ 2 max(vCNOTC4

|+〉(L−1), hSWAPC4

|0〉(L−1), vSWAPC4

|0〉(L−1))

+ 3 max(hSWAPC4

|0〉(L−1), vSWAPC4

|0〉(L−1)) + hSWAPC4

|+〉(L−1)

Error Detection and Correction

We use the Knill syndrome extraction in Figure 25 instead of the Steane syndrome ex-

traction used in the Steane code. Here we assume the data tile |Q〉 and the two ancilla tiles

|A〉, |B〉 are vertically arranged in the order |Q〉 , |A〉 , |B〉.

(63a)
ops(EC(L)) = P|+〉(L) + P|0〉(L) + 14vCNOTC4

(L−1) + 7MC4

Z(L−1)

+ 7MC4

X(L−1) + 7XC4

L−1 + 7ZC4

L−1 + 14vSWAPC4

(L−1)

(63b)
time(EC(L)) = max(P|+〉(L), P|0〉(L)) + 2vCNOTC4

(L−1)

+ max(MC4

Z(L−1),M
C4

X(L−1)) +XC4

L−1 + ZC4

L + 2vSWAPC4

(L−1)

Remark: It would be good if we can squeeze the size of the three tiles for error correction.
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8.4 Error Threshold

Herein we estimate the error threshold of the Knill’s post-selection scheme in the 2-dimensional

tile for the case of stochastic, adversarial noise. Following the procedure presented in [11,12,

32], we count the number of malignant pairs of locations in the extended rectangle of the

CNOT gate. A rectangle of the CNOT gate consists of the bitwise CNOTs on two logical

qubits followed by two error detection ED blocks. An extended rectangle of the CNOT gate

is a rectangle of the CNOT gate with two preceding error detection blocks. As shown in

Figure 27, we assume the preceding EDs are ED+s and the following EDs are ED0s.

ED+	   ED0	  

ED+	   ED0	  

Fig. 27. The extended rectangle of the CNOT gate.

A set of locations is called malignant if errors in these locations could make the calculation

of the rectangle incorrect. There are seven types of locations in a CNOT extended rectangle:

(1) P|+〉; (2) P|0〉; (3) MX ; (4) MZ ; (5) hSWAP/vSWAP ; (6) hCNOT/vCNOT ; (7) idling

qubits.

To obtain a higher error threshold, we optimize the tile operations of the extended rectangle

of the CNOT gate and the animation is available online. There are 196 locations in the

extended rectangle of the CNOT gate: 32 idle qubits and 154 gates, in which 38 gates are

SWAPs. Here we assume the error detection blocks begin before the time step that the data

qubits come in and thus there are no idle qubits at time steps 1, 2, and 3 in the preceding

ED. We find that the numbers of malignant pairs of locations of each kind are given by

α =


4 8 8 0 0 32 16

0 0 14 96 80 32
16 0 96 104 32

16 96 112 32
442 672 268

322 288
106

 ,

where αi,j represents the number of malignant pairs at locations of types i and j.

Let ε
(m)
j be the error rates of type j at level m. For error correction to be effective, we

require

ε
(m+1)
6 =

∑
i≤j

αi,jε
(m)
i ε

(m)
j +O((ε(m)

max)3) ≤ ε(m)
6 , (64)

where αi,j is the number of malignant pairs of types i and j and εmmax is the maximum of the

seven types of error rate.

Remark: in general the error rate of a SWAP gate is higher than a CNOT gate since it

is implemented by a series of gate operations, such as three CNOT gates. However, in the

2-dimension tile, we only swap a data or ancilla qubit with a dummy qubit and the cost of

such a SWAP gate is less than a CNOT gate as can be seen in Appendix 17.1.

We assume all errors of weight 3 or larger are malignant and the effect of errors of weight

higher than three can be ignored. (This might still be an over estimate of higher-order terms.)
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Let the ratio of the memory error rate of the idle qubits to the gate error rate as γ. We define

the number of effective malignant pairs as

6∑
i,j,=1,i>j

αi,j +

6∑
i=1

γαi,7 + γ2α7,7.

If we assume the error rates are the same for all types of locations, the total number of

malignant pairs is 2892 and Eq. (64) becomes(
196

3

)
(ε

(m)
6 )3 + 2892(ε

(m)
6 )2 < ε

(m)
6 ,

which gives an error threshold

ε(γ = 1) < 3.06× 10−4.

If we assume γ = 0.1 or γ = 0, the number of effective malignant pairs are 2185.9 and 2118.0,

and the error thresholds become

ε(γ = 0.1) < 4.06× 10−4,

and

ε(γ = 0) < 4.14× 10−4,

respectively.

8.5 Ancilla Factory

We first analyze the ancilla factories for |+i〉 states. The analysis of the ancilla factories for

the magic state T |+〉 follows. Suppose ε
(r)
anc is the error probability of the output state of

r rounds of distillation protocol in Figure 16 without the twirling blocks. Let’s assume the

distillation circuit is perfect. From [32], we have

ε(r)anc ≤
1

2
(2ε(0)

anc)
2r ,

where ε
(0)
anc is the initial error rate of preparing a |+i〉 state. A |+i〉 state can be obtained

by preparing a |+〉 state followed by a phase gate S. Thus ε
(0)
anc can be approximated by the

sum of the error rate of preparing |+〉 and the error rate of a physical phase gate S, which is

assumed to be a known property of the physical quantum technology.

Then we choose the |+i〉 with error rate ε
(r)
anc such that the output of the injection circuit

in Figure 14 at the highest level of concatenation has an error rate smaller than the error

threshold of the quantum error-correction scheme. In reality, the distillation circuit is not

perfect, and we would expect more rounds of distillations than the r required.

Now we have the number of the gates for a successful preparation of a |+i〉 state, which

is the number of gates in the distillation protocol plus the number of gates in the injection

circuit Figure 14.

Since the cost of an ancilla factory is much higher than the cost of movement of the |+i〉
states (roughly O(104) based on our numerical estimates), we would like to reduce the number
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of ancilla factories but to move the |+i〉 states around the quantum computer. Suppose there

are K logical qubits in an algorithm. Then the size of the quantum computer is roughly
√
K

times the size of a tile. Then the movement distance of a |+i〉 state is at most
√
K/2 times

the size of a tile. Thus the movement cost is about
√
K/2 SWAP gates at the highest level

of concatenation.

Now we determine the number of ancilla factories F we need. Assume a computational

step for a combination of a certain algorithm, a quantum error-correcting code, and a physical

technology takes time Tcomp. A computational step could be thought of as the period between

two phase gates are applied on the same qubits. Assume a factory takes time Tanc to prepare

a |+i〉 state. (These ancilla qubits are prepared off-line and they are preserved and moved to

some target locations by SWAP gates.) Assume the maximum number of phase gates in a

computational step is N . (This number is called the paralleling factor of the phase gate in

the algorithm.) Assume an ancilla factory prepares a |+i〉 state with successful probability

psucc. Let b be the number of |+i〉 states successfully generated by F ancilla factories. Note

that b obeys a binomial distribution with parameters F, psucc, which can be approximated by

a normal distribution with parameters N (Fpsucc, Fpsucc(1−psucc)). Then F ancilla factories

can on average generate
FTcomp × psucc

Tanc

|+i〉 states in time Tcomp. (We can replace Tcomp by Tcomp −
√
K/2time(SWAP (m)) for

higher accuracy.) We would like this number to be significantly larger than N to ensure that

we have enough |+i〉 states. It is reasonable to choose Fpsucc to be 5 deviations larger than
NTanc
Tcomp

, that is

Fpsucc ≥ 5
√
Fpsucc(1− psucc) +

NTanc

Tcomp
.

Thus F can be determined by choosing appropriate Tcomp.

We obtain this estimate for two reasons: first, to avoid the cost in error correction to

preserve the |+i〉 states; and second, to guarantee that we have sufficient number of |+i〉
states when they are needed.

9 Error Correction with the Surface Code

The rest of this document describes the methodology we utilized to estimate the resources

necessary to fault tolerantly implement a given algorithm using the surface code [36]. We

also refer the reader to [37] which illustrates how to do computation with the surface code.

This document quantifies the cost of this computation. As before, we assume that we know

the number of logical gates required to implement each algorithm, as well as statistics on

gate reliability and operation time associated with the physical quantum technology that the

algorithm is to be implemented on. Our high level approach is as follows. First we estimate

the number of physical qubits required to perform the computation. Then we estimate the

running time and finally the number of gates of each type required by the computation.

To estimate the number of physical qubits, we first establish the code distance. Given

the number of logical gates in the algorithm, the threshold [38, 39] of the code and error

properties of the physical quantum technology, we choose a sufficiently high code distance

to guarantee that the calculation successfully finishes with probability at least 50%. We
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describe a tiled layout that ensures that the weight of any logical operator is equal at least

to the code distance. Since the optimal layout and the number of physical qubits depends on

the syndrome extraction method of choice (Steane, Shor, Knill), we describe a separate layout

for each of these methodologies. In addition to reserving one tile per logical qubit required

by the algorithm, we also estimate the additional space needed for ancilla distillation as well

as ancillary space required to perform certain operations, such as CNOT .

The running time is obtained by calculating the time needed to perform each elementary

operation. First, we estimate the time needed to perform one round of syndrome extraction

and error correction for each of the syndrome extraction schemes. Then we estimate the time

needed to perform elementary logical gates such as logical state preparation, measurement

and the CNOT gate. We build our estimate from the ground up, starting with estimates for

the simpler logical gates which we use as building blocks in more advanced operations such

as ancilla distillation.

A gate count that provides the number of gates of each type that need to be executed is

obtained in two steps as follows. In the first step, we estimate the number of gates needed to

perform error correction during the entire duration of the experiment. Since error correction

is performed continuously, and all other operations require a small number of gates, this is the

dominant factor in the final gate count. Note that the gate count critically depends on the

syndrome extraction method of choice. In the second step, we add the small number of gates

required to perform logical operations. These additional operations in the second step do not

include syndrome measurement, and therefore the estimate can be done independently of the

syndrome extraction method of choice. Also note that certain operations such as Pauli’s do

not require any additional physical operations as long as we keep track of the Pauli frame.

The rest of the document is organized as follows. In Section 10 we discuss the inputs

(properties of quantum technologies and algorithms) needed to perform this estimate. Then

in Section 11 we estimate the number of physical qubits required by the system. In Section 12

we describe the methodology used to estimate the running time on the given algorithm and

physical quantum technology, and finally in Section 13 we estimate the number of gates of

each type.

10 Surface Code Estimate Inputs and Goals

We want to estimate the resources required to implement an algorithm on a given physical

quantum technology. For convenience we will assume that this data is given to us in the form

of two data structures (Algorithm and Technology) containing numbers.

The structure Algorithm has the following fields:

1. Logical qubit count: numQubits

2. Gate counts: numPrep |0〉, numPrep |+〉, numH, numS,numS†, numT,numT†, numCNOT,

etc.

3. Gate parallelism: paralPrep |0〉, paralPrep |+〉, paralH, etc.

The structure Technology has the following fields:

1. Physical gate error rate: errorRate
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2. Physical gate times: Prep |0〉Time, Prep |+〉Time, HTime, STime,S†Time, TTime,

T†Time, CNOTTime, XTime, etc.

Our goal is to transform these inputs into:

1. Number of qubits: The physical area used to implement algorithm, i.e., the number

of physical qubits.

2. Runtime: The actual time to run algorithm in units of time.

3. Gate count: The number of gates of each type needed during the entire computation.

To do this, we will use the following steps:

1. Find code distance d: For a required logical gate reliability and the given physical

machine-level reliabilities, determine the required size and spacing of the holes in the

surface code lattice to ensure that logical operations in the code have weight at least d.

2. Determine magic state distillation precision: From the physical machine-level pa-

rameters, determine the approximate error in the undistilled state and the concatenation

level required to distill the states to be usable in the logical circuit.

3. Determine number of qubits: Determine the total number of logical qubits required

to support the computation, based off of the number of logical qubits in the algorithm

and the number of logical ancillary qubits to support CNOT, H, S, and T operations

(including distillation). Based upon a layout strategy for logical qubits, this will provide

us with an estimate of the area required to implement the computation. The layout

strategy used will depend upon the constraints of the physical quantum technology. We

will assume that physical qubit layout is restricted to two dimensions.

4. Determine timesteps: Determine the total number of timesteps required to imple-

ment the algorithm, based upon the number of timesteps required for each of the logical

operations in the algorithm. The number of timesteps depends on the level of paral-

lelization that can be assumed between logical operations. From timesteps we can attain

the runtime of the algorithm.

5. Determine number of gates for error correction: Count the number of gates

needed to extract all syndromes in the entire system and to correct errors.

6. Determine number of gates for all other operations: Count the number of ad-

ditional gates needed to perform each logical operation, multiplied by the number of

occurrences of these logical operations in the algorithm.

7. Determine the final gate count: Add the number of gates needed by error correction

and other operations.
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11 Area Estimate

Here we estimate the number of physical qubits, i. e., number of physical qubits needed to

encode a logical qubit, the space needed to store ancillas and distill magic states. To do this,

we estimate a sufficient code distance. Then we specify a physical qubit layout for several

possible syndrome extraction techniques and provide the final pysical qubit estimate.

11.1 Background and Terminology

Here we discuss some surface code terminology necessary to explain the process behind our

estimate.

The surface code [36] places qubits on a lattice such as the one shown in Figure 28 a).

The data qubits are located on each edge of the grid.

The code has stabilizers of type XXXX and ZZZZ. The XXXX stabilizers correspond

to the orange diamonds in Figure 28 a), and are also called site stabilizers. The ZZZZ

stabilizers correspond to the blue diamonds and are called plaquette stabilizers. Note that

stabilizers of weight three shown as triangles may be present at the edges of the lattice (we

assume absence of periodic boundary conditions), or on the perimeter of holes in the surface.

To measure each of the stabilizers, we require one or more ancilla qubits. The syndrome

measurement circuits, required number of ancillas, and optimal qubit layout differs for each

syndrome extraction method. Detailed analysis for the Steane, Shor, and Knill syndrome

extraction method is shown in Section 11.4.1, 11.4.2, and 11.4.3, respectively. Initially, to

facilitate the analysis before discussing specifics of the three syndrome extraction methods,

we will think of the lattice in terms of the grid in Figure 28. Note that if we have a grid that

is w squares wide and h squares tall, we will have a surface consisting of 2wh+w+h physical

qubits (excluding syndrome measurement ancillas).

As discussed in [37] logical qubits are represented by areas in the surface where stabilizers

are not enforced. These areas are called holes. Holes always come in pairs. If we don’t

enforce a rectangular region of the grid cells, we create a ”smooth” hole. Figure 28 b) shows

a smooth hole on the grid. If we don’t enforce a region of stabilizers that is shifted by half a

grid cell (in both spatial dimensions), we create a ”rough” hole. Since logical Pauli operators

in the code are loops that wrap around a hole or connect pairs of holes, the size and minimum

spacing of these holes affects the fault tolerance of the system. The larger the hole, the better

the fault tolerance.

The length of the logical operator with the smallest weight is called code distance. In

the next subsection, we describe how to choose code distance to ensure that the computation

finishes with the correct result with high probability.

11.2 Layout with Sufficient Code Distance

Let each logical qubit be represented by a pair of smooth holes in the surface. These holes are

positioned on the grid so that the distance between two holes is at least d squares (the code

distance) to maintain fault-tolerance. Figure 29 shows this layout. Since each logical qubit

may be involved in a braiding operation later on (where another hole will be in between the
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Fig. 28: The lattice of the surface code.

two holes representing a logical qubit), we set the distance of the two holes in the logical qubit

to be a distance of 3d away from each other by default. This will allow us to place a hole of

width d in the area between the two holes while still maintaining a distance of d between all

three holes. This thereby facilitates braiding operations between logical qubits. We also lay

out each pair of holes next to each other, maintaining a distance of 3d between the edges of

every hole pair, allowing enough room for hole movement to occur between different logical

qubits.

The required code distance d can be estimated by solving the following equation (as shown

in [40])

εLogical ≥ C1

(
C2

εPhysical
εThreshold

)b d+1
2 c

. (65)

This equation involves the following variables:

• Logical error rate εLogical: The required logical error rate to guarantee high proba-

bility of success can be estimated as εLogical ≈ 0.5/Algorithm.numGates.

• Physical error rate εPhysical: The physical error rate depends on the parameters of

the physical technology (here, εPhysical = Technology.errorRate).

• Code threshold εThreshold: Several estimates of the threshold of the surface code have

been presented in literature. Here, we use the numerical estimate εThreshold ≈ 0.01

from [37].

• Code constants C1 and C2: The constants depend on the properties of the code. As

has been done in [40], we use the estimate C1 ≈ 0.13 and C2 ≈ 0.61.
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Fig. 29: Spacing between holes representing logical qubits.

11.3 Ancilla Space

To store certain number of logical qubits, we need the same number of hole pairs. However,

to actually perform computation, we need space to store ancillas. Moreover, our approach of

computation with the surface code requires preparation of magic states [41], which requires

additional space. In our layout scheme, there are two contributors to the ancilla area:

1. CNOT ancilla area: Additional space is needed to store newly initialized ancilla

qubits to perform CNOT operations between any two hole pairs.

2. Operator ancilla area: Additional space is required to distill and store magic states.

Specifically, magic states are needed to perform the S, S†, T , and T † operations.

We will now determine how many extra hole pairs are required for computation.

11.3.1 Logical CNOT Space

We will assume that all data is represented by a pair of smooth holes. To implement an

arbitrary CNOT, we require space for 2 additional hole pairs in our layout. This additional

space is initially empty and is initialized prior to performing the CNOT operation(s). Figure

30 shows an illustration of the qubit layout. Dashed lines encircle pairs of holes representing

one logical qubit in the memory.

CNOT operations can be done easily between smooth and rough hole pairs by using a

braiding procedure in which one hole in a hole pair is grown and shrunk to ”move” around

another hole in another hole pair. Braiding is illustrated in Figure 31 a) and b). Performing

a smooth-smooth CNOT is more complicated, and we will need our ancilla space for smooth-

rough qubit conversion.
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The schematic circuit for implementing a smooth-smooth CNOT is shown in Figure 32

a). One of the ancillas is created by puncturing a pair of smooth holes and initializing the

qubit in the |0〉 state. The other ancilla is initialized as a pair of rough holes in the |+〉
state. This is followed by three smooth-rough CNOTs between the data qubits and ancillas,

implemented by braiding, and finally two measurements. By this measurement, the control

and one of the ancilla qubits are destroyed and the location of the control qubit moves to

one of the ancilla qubits. Figure 32 b) shows how the position of the qubits changes in the

layout. This requires us to keep track of the location of the logical qubits throughout the

computation. At the end, we are still left with two empty spots, which allows us to perform

the next CNOT operation between any two hole pairs. Note that if we add multiple target

qubits and replace the middle CNOT in the circuit with a multi-target smooth-rough CNOT,

we can implement a smooth-smooth multi-target CNOT. Such circuits are particularly useful

for operations such as magic state distillation, as will be described later.

It is important to note that our current resource estimation methodology assumes that

multiple logical CNOT gates can be scheduled in parallel, requiring Qubits.CNOTAncilla =

2Algorithm.paralCNOT ancilla locations. If these CNOT gates are scheduled in parallel,

we may not be able to guarantee that we can find non-overlapping braids, and some of the

CNOTs must be scheduled in sequence. However, our assumption is justified because all

the analyzed algorithms have very small parallelization factors of the CNOT operations at

the logical level, and it is likely that one can find a few non-overlapping braids between

pairs of qubits dispersed in a large system. The feasibility and optimal strategy for parallel

scheduling of a larger number of CNOT operations in the surface code is the subject of our

ongoing investigation.

11.3.2 Magic State Distillation Space

Here, we will determine how many ancilla qubits are needed to distill a sufficient number of

magic states. The operations that require ancilla qubits are the S, S†, T , and T † gates. We

need two types of ancillas initialized in states |Y 〉 and |A〉 [37, 41]:

|Y 〉 =
1√
2

(|0〉+ i |1〉) , (66)

|A〉 =
1√
2

(
|0〉+ eiπ/4 |1〉

)
. (67)

Since we can only inject low-precision ancilla states into the system, we have to distill them

using distillation circuits that take multiple low-precision ancilla states and output a single

ancilla state of a higher precision. The S and S† gates require one |Y 〉 ancilla and do not

destroy the ancilla. The T and T † gates require one |A〉 ancilla (which is destroyed in the

process of applying the gate) and potentially a |Y 〉 ancilla that is not destroyed as it is used

in the application of an S gate. Hence, it is necessary to have enough area to prepare the

the |Y 〉 state just a few times (more precisely, max(Algorithm.paralS,Algorithm.paralT )

times to allow S and T gate parallelism). The |Y 〉 state preparations are assumed to be at

the beginning of the computation. We assume that the |A〉 ancillas are prepared offline to

reduce the amount of time it takes to apply the T and T † gates. Our methodology makes the

simplifying assumption that simultaneous offline preparation of Algorithm.paralT ancillas of



M. Suchara et al. 53

0 ancilla

+ ancilla

target 
input

control 
input

control 
output

target 
output

Z Measurement

X Measurement

smooth qubit

smooth qubit

rough qubit

smooth qubit smooth qubit

smooth qubit

a) Smooth-smooth CNOT using smooth-rough CNOTs

Empty  spot 1: 
use for 0 ancilla Control

Target

b) Smooth-smooth CNOT moves locations of control and target defect pairs

Empty  spot 2: 
use for + ancilla

Target Empty  spot 2: 
where + ancilla was

Control (moves to 
where 0 ancilla was)

New empty 
spot where 
control was

Note: add multiple targets and smooth-rough 
multi-target CNOT to implement smooth-
smooth multi-target CNOT

Fig. 32. Smooth-smooth CNOT.



54 Estimating the Resources for Quantum Computation with the QuRE Toolbox

|A〉 type is sufficient, but we note that in the real system more ancillas may be need if the T

gates are applied frequently.

To compute the resources to prepare the |Y 〉 and |A〉 states, we need to analyze the

distillation circuits for these states. Details on each of the distillation circuits are given

below:

• Distillation of |Y 〉 state: The distillation circuit for the |Y 〉 takes as input 7 copies

of the state |Y 〉 with error probability p and produces a state with an error probability

7p3.

• Distillation of |A〉 state: The distillation circuit for the |A〉 takes as input 15 copies

of the state |A〉 with error probability p and produces a state with an error probability

35p3.

Concatenating these circuits allows us to achieve lower error probabilities. To achieve a desired

error probability r, we can compute the number of distillation levels L1 required to distill the

|Y 〉 state by solving the equations:

YError(L1) < r, (68)

YError(L1) = 7YError(L1 − 1)3, (69)

where YError(0) is the physical error rate. This yields:

L1 =


log
(

log(r)+log(
√

7)

log(Y Error(0))+3log(
√

7)

)
log(3)

 . (70)

To solve for the number of distillation levels L2 required to distill the state |A〉 we solve

the recurrence:

AError(L2) < r, (71)

AError(L2) = 35AError(L2 − 1)3, (72)

where AError(0) is the physical error rate. This yields:

L2 =


log
(

log(r)+log(
√

35)

log(AError(0))+3log(
√

35)

)
log(3)

 . (73)

Once we have computed L1 and L2, we can compute the number of extra hole pairs

required for the distillation. Let us first consider an abstract distillation circuit where n

qubits are distilled into a single qubit. Note that the recursive distillation process can be

understood in terms of a tree structure, where the final result is the process of operations

involving several layers of source qubits. This is illustrated by example in Figure 33, where

n = 2 and the qubits involved in L = 3 levels of distillation are shown. We can estimate

the number of qubits required to facilitate the distillation as nL, the number of leafs in the

tree. Then the number of qubits required to distill a single ancilla |Y 〉 and |A〉 is 7L1 and
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15L2 respectively. Finally, let Qubits. |Y〉Ancilla and Qubits. |A〉Ancilla denote the number

of qubits in the entire ancilla factory for ancillas of type |Y 〉 and |A〉, respectively. Then we

have:

Qubits. |Y〉Ancilla = 7L1max(Algorithm.paralS,Algorithm.paralT ), (74)

Qubits. |A〉Ancilla = 15L2Algorithm.paralT. (75)

11.4 Qubit Layout

Here we consider the layout of the physical qubits. It is important to note that our analysis

is simplified – we do not consider some connectivity and qubit layout constraints that are

specific to each physical technology. We assume that we are able to place qubits in a two

dimensional plane on a regular grid, and that nearest neighbors are always able to interact.

This assumption greatly simplifies our analysis because we do no have to design a separate

qubit layout for each technology. Performing a finer-grained analysis for a specific technology

should be a straightforward extension of this work.

We use a square layout, where we pack x hole pair locations into a grid of d
√
xe × d

√
xe

hole pair locations with adequate spacing near the edges of the grid to allow braiding opera-

tions. Let the width of the grid be denoted as w = d
√
xe. The layout is shown in Figure 34

a). An alternative approach would be a linear layout shown in Figuer 34 b), which may be

required by some physical realizations. We do not consider the linear layout in this work as

we believe it is too restrictive for any viable quantum architecture.

Each of the blocks shown in Figure 34 a) consists of d×d physical data qubits to guarantee

sufficient code distance. Each block must also contain sufficient number of additional qubits

that serve as ancillas during syndrome measurement. Considering only the data qubits, the

width and height of the layout are:

Layout.width(x) = d(3d
√
xe+ (d

√
xe − 1) + 4), (76)

Layout.height(x) = d(7d
√
xe+ (d

√
xe − 1) + 4)). (77)

(78)

This means that the number of unit squares in the surface code layout is Layout.width×
Layout.height. The unit squares are the basic building blocks of the code consisting of four

data qubits, one on each of the four sides of the square. The only remaining task is to estimate

the number of physical qubits that reside in the unit square in the surface code, including

the ancillas used for syndrome measurement. This is done separately for the three syndrome

extraction methods. We note that some care must be taken to avoid qubit double counting

as two squares are incident on each data qubit.

11.4.1 Steane Syndrome Extraction

The circuit for Steane syndrome extraction is illustrated in Figure 35. The circuit on the left

measures the site XXXX stabilizer and the circuit on the right measures the plaquette ZZZZ

stabilizer. The four measured data qubits are denoted d1 to d4, and the ancilla required for

the syndrome measurement is denoted a1. We see that a single ancilla suffices for each site

and plaquette stabilizer measurement. Therefore, our proposed qubit layout places one qubit

in the center of each site and plaquette. This is shown in Figure 36.
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In our layout, the number of physical qubits including ancillas in each square is therefore:

Layout.QubitsPerSquareSteane = 4. (79)
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d3	  
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d3	  
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Fig. 35. Steane syndrome extraction circuit.
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Fig. 36. Qubit and ancilla layout for Steane syndrome extraction.

11.4.2 Shor Syndrome Extraction

The circuit for Shor syndrome extraction is illustrated in Figure 37. The circuit on the

left measures the site XXXX stabilizer and the circuit on the right measures the plaquette

ZZZZ stabilizer. The four measured qubits are denoted d1 to d4, Unlike for the Steane

method, a single syndrome measurements requires five ancilla qubits. Four qubits denoted

a1 to a4 are used to prepare an entangled cat state and the fifth ancillary qubit a5 is used to

verify the state. Our proposed qubit layout places five qubits around the center of each site

and plaquette. This is shown in Figure 38.

In our layout, the number of physical qubits including ancillas in each square is therefore:

Layout.QubitsPerSquareShor = 12. (80)

11.4.3 Knill Syndrome Extraction

The circuit for Knill syndrome extraction is illustrated in Figure 39. One type of circuit

is needed to measure each data qubit in the lattcie. The original data qubit denoted d1 is
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Fig. 37. Shor syndrome extraction circuit.
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Fig. 38. Qubit and ancilla layout for Shor syndrome extraction.

teleported after measurement and replaces the ancillary qubit a2. The two other qubits are

measured in the process. Our proposed qubit layout places two ancillary qubits right next to

each data qubit. This is shown in Figure 40. A black qubit is a data qubit, and the red and

blue qubit directly to the right are its ancillas. After measurement, the state of the qubit is

teleported to the red qubit. In the next measurement round, the two qubits that were just

measured (d1 and a1) become the ancillas and the state is teleported back to the original

location (into qubit d1). Note that a further optimization of this layout is possible. For

quantum technologies with time consuming state initialization, additional qubits can be used

to eliminate the need to wait for ancilla initialization. However, this optimization is beyond

the scope of this report.

In our layout, the number of physical qubits including ancillas in each square is therefore:

Layout.QubitsPerSquareKnill = 6. (81)



60 Estimating the Resources for Quantum Computation with the QuRE Toolbox

d1	  

a1	  

a2	   d1	  

Fig. 39. Knill syndrome extraction circuit.

Stabilizers	  

Z	  

Z	  

Z	  

Z	  

Original	  data	  qubits	  

New	  qubit	  loca7ons	  

X	  

X	  

X	  

X	  

Ancillas	  
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11.5 Total Area

We can now arrive at the total area required to perform our computation. To recap, we will

need space for:

• Logical qubits: the algorithm uses Algorithm.numQubits logical qubits.

• CNOT area: we need Qubits.CNOTAncilla ancilla spaces for parallel smooth-smooth

CNOT operations.

• Persistent |Y 〉 storage: One space each to store themax(Algorithm.paralS,Algorithm.paralT )

ancillas of type |Y 〉 that are used (and not destroyed) by the S and T † operators.

• Ancilla space for |A〉 distillation: offline |A〉 ancilla distillation requires Qubits. |A〉Ancilla

spaces.

• Space for the initial |Y 〉 distillation (can overlap with logical qubits and |A〉
distillation space): Initially, Qubits. |Y〉Ancilla spaces are required to build persistent

|Y 〉 state used by the S and S† operators. However, this space can overlap with the

space for the logical qubits and the ancilla space for the |A〉 state, as the space will be

used only once at the beginning of the computation. After this, the space can be used

for storing other qubits.
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Putting these together, we get the following expression for the number of spaces required

to implement the algorithm:

Hole Pairs = Qubits.CNOTAncilla + max(Algorithm.paralS,Algorithm.paralT) + (82)

max {Qubits. |A〉Ancilla + Algorithm.numQubits,Qubits. |Y〉Ancilla} .

Finally, we can get the total number of qubits for the Steane extraction technique as:

Physical Qubits = Layout.QubitsPerSquareSteane× Layout.width(Hole Pairs)× (83)

Layout.height(Hole Pairs).

The physical qubit count for Shor and Knill techniques is obtained analogously.

12 Running Time Estimate

Surface code computation requires us to perform logical operations on our surface of qubits

and also regular error-correction cycles. To compute the time estimate for the algorithm, we

first determine the execution times for the key gates in our circuit.

We build our estimates of the time required to implement logical operations from the

ground up. First, we arrive at estimates of simple logical operations. Then, more complex

logical operations are expressed in terms of the simpler operations. In the surface code, opera-

tions usually consist of some set of physical operations followed by d rounds of error correction

to maintain fault tolerance, as shown in Figure 41. Our models quantify the cost of both the

logical operations and the error correction.

In the interest of readability, we will assume that our variables refer to times in this section

and we will abbreviate the quantum technology parameters as follows:
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Prep |0〉 = Technology.Prep |0〉Time (84)

Prep |+〉 = Technology.Prep |+〉Time (85)

H = Technology.HTime (86)

S = Technology.STime (87)

S† = Technology.S†Time (88)

T = Technology.TTime (89)

T† = Technology.T†Time (90)

CNOT = Technology.CNOTTime (91)

Rz = Technology.RzTime (92)

The following list discusses the estimates for a number of logical operations. Since we use

smooth hole pairs to encode our logical qubits, we will successively build up to estimates for

key ”double smooth” logical operations. After this, we can write an equation for the runtime

of the algorithm.

1. No-op (stabilizer measurement cycle): All the stabilizers (site and plaquette) are

measured. By measuring in the right order, these can be parallelized. The time is given

by the time of the stabilizer measurement circuit with the maximum time. Since the

syndrome measurement circuit is different for each of the three syndrome extraction

methods (Steane, Shor and Knill), we have three different expressions for the time to

perform the measurements.

Steane.EC = max(Prep |0〉+ MeasX,Prep |+〉+ MeasZ) + 4CNOT (93)

Shor.EC = max(Prep |0〉,Prep |+〉) + 4CNOT + H +max(MeasX,MeasZ)(94)

Knill.EC = max(Prep |0〉,Prep |+〉) + 2CNOT +max(MeasX,MeasZ) (95)

(96)

In the interest of readability, we will drop the name of the syndrome measurement

technique and simply refer to the time needed to perform syndrome measurement as

EC.

2. Error-correction cycles for fault tolerance: The surface code requires us to main-

tain d spacing not just in the spatial domain, but also in the temporal domain. To do

this, we can apply a primitive that incorporates d stabilizer measurement cycles called

TEC. We will add this to several of our fault-tolerant operations.

TEC = EC× d (97)

3. Prepare single logical hole: While we assume all logical data is to be stored in smooth

qubits, it is still necessary to prepare rough qubits to implement CNOT operations. We

assume that state preparations are followed by the error correction block.
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• Prepare smooth |0L〉 and |+L〉: The former requires a set of parallel X mea-

surements in the hole and a round of error correction with new stabilizers for sides

of the hole. For the latter, the procedure is similar but instead of X measurements

we must prepare the physical |+〉 state in the block. Since error correction is in-

corporated, this part is bounded by amount of error correction required for fault

tolerance.

PrepSmooth |0L〉 = MeasX + TEC (98)

PrepSmooth |+L〉 = Prep |+〉+ TEC (99)

• Prepare rough |0L〉 and |+L〉: The procedures for these are similar to those for

the smooth qubits.

PrepRough |0L〉 = Prep |0〉+ TEC (100)

PrepRough |+L〉 = MeasZ + TEC (101)

4. Measure logical hole in X or Z: These operations each require a chain of measure-

ments in either the X or Z bases followed by an ECC round. This will destroy the

holes. Each of the measurements in the chain can be done in parallel.

• Smooth holes:

MeasXSmooth = MeasX + TEC (102)

MeasZSmooth = MeasZ + TEC (103)

• Rough holes:

MeasXRough = MeasZ + TEC (104)

MeasZRough = MeasX + TEC (105)

5. Grow hole: Growing a hole requires measurements and corrections.

• Smooth: To grow a smooth hole, X measurements are applied in the region adja-

cent to the hole and then Z flips are applied based upon the measurements. This

also requires measuring three term stabilizers on the sides on the hole, however,

this is taken into account by an incorporated ECC step.

GrowSmooth = MeasX + Z + TEC (106)

• Rough: Rough holes are done similarily, but with Z measurements and X flips.

GrowRough = MeasZ + X + TEC (107)

6. Shrink hole: Shrinking or splitting a hole requires us to reenforce the stabilizers in the

region that are no longer part of the hole. For smooth holes, measuring the Z stabilizers

and possibly correcting them by bit flips on the qubits, followed by error correction
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completes the shrinking operation. Rough holes are shrunk analogously. finishes the

movement.

ShrinkSmooth = MeasZ + X + TEC (108)

ShrinkRough = MeasX + Z + TEC (109)

7. Double holes: It is useful to use double holes to encode information. In general, the

costs of building double holes are equivalent to building single holes, as the operations

involved in this process can be done in parallel. The costs for several double hole

operations are shown below.

PrepDoubleSmooth |0L〉 = PrepSmooth |0L〉 (110)

PrepDoubleSmooth |+L〉 = PrepSmooth |+L〉 (111)

MeasXDoubleSmooth = MeasXSmooth (112)

MeasZDoubleSmooth = MeasZSmooth (113)

PrepDoubleRough |0L〉 = PrepRough |0L〉 (114)

PrepDoubleRough |+L〉 = PrepRough |+L〉 (115)

MeasZDoubleRough = MeasZRough (116)

MeasXDoubleRough = MeasXRough (117)

8. Low-level state injection (single smooth hole): This procedure (as described

in [41]) allows us to inject a small smooth hole with an arbitrary state |ψ〉 into the

surface. It requires one Z measurement, the application of four X operators (which can

be done in parallel), the application of the operators that applies |ψ〉, an X stabilizer

measurement, then a Z operator, and then four Z operators (which can be done in

parallel). An ECC step is added at the end of this procedure.

InjectSmooth |ψL〉 = MeasZ + X + Apply |ψ〉+ EC + Z + Z + TEC (118)

As described earlier, two key physical states that we need to perform the S and T gates

are the |Y 〉 = 1√
2

(|0〉+ i |1〉) and |A〉 = 1√
2

(
|0〉+ eiπ/4 |1〉

)
states. These are assumed

to be done using a arbitrary Z rotation mechanism on the physical. Hence, the costs

for injecting these gates are as follows.

InjectSmooth |AL〉 = MeasZ + X + Rz + EC + 2Z + TEC (119)

InjectSmooth |YL〉 = MeasZ + X + Rz + EC + 2Z + TEC (120)

9. Preparing double smooth |YL〉 and |AL〉: The cost to inject these states is given by

the cost to prepare the states and to grow and split them. The states are initial single

holes, grown as single holes, and split as single holes, building a double hole. These are

shown below.

PrepDoubleSmooth |AL〉 = InjectSmooth |AL〉+ GrowSmooth + ShrinkSmooth (121)

PrepDoubleSmooth |YL〉 = InjectSmooth |YL〉+ GrowSmooth + ShrinkSmooth (122)
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10. Double smooth-rough CNOT: A smooth-rough CNOT between two hole pairs is

done by braiding. The braiding operation requires two movements and is done using

one of the rough hole pieces. Hence, the operation requires a grow, a shrink, another

grow, and another shrink.

DoubleSmoothRoughCNOT = GrowRough + ShrinkRough + (123)

GrowRough + ShrinkRough

11. Double smooth-rough multi-target CNOT: In our layout, a multi-target smooth

rough CNOT operation involving n targets can be done with n moves to each target

pair, followed by one movement back. In theory, this can be done with fewer moves, but

this requires the hole pairs to be laid out in manner so segment of the braiding path

intersects with itself.

DoubleSmoothRoughMTCNOT(n) = (n+ 1)(GrowRough + ShrinkRough)(124)

12. Double smooth-smooth CNOT: A smooth-smooth CNOT between hole pairs is

done using the construction from [37], which requires a rough ancilla state and a smooth

ancilla state. The rough ancilla pair is prepared to a |+L〉, the smooth pair is prepared

to a |0L〉. We assume that the ancilla preparation is done offline and doesn’t affect the

running time. Then, 3 smooth-rough CNOTs are done, and then a smooth and rough

measurements are done.

DoubleSmoothSmoothCNOT = 3DoubleSmoothRoughCNOT + (125)

max(MeasZDoubleSmooth,

MeasXDoubleRough)

13. Double smooth-smooth multi-target CNOT: The difference between this oper-

ation and the single-target double smoooth-smooth CNOT is that the smooth-rough

CNOT in the middle of the circuit is replaced by a multi-target smooth-rough CNOT

operation. Hence, the cost of this operation is given as follows.

DoubleSmoothSmoothMTCNOT(n) = 2DoubleSmoothRoughCNOT + (126)

DoubleSmoothRoughMTCNOT(n) +

max(MeasZDoubleSmooth,

MeasXDoubleRough)

14. Prepare logical double smooth |YL〉 and |AL〉 to a level: Concatenated distillation

of the states |YL〉 and |AL〉 stored in smooth holes is necessary to apply the S and T

gates. Here we show the costs of these circuits implemented using regular smooth-

smooth CNOT operations and also multi-target CNOTs.

• Double smooth |YL〉: The distillation circuit for the |YL〉 state resembles a

Steane-code logical encoder with operations ordered backwards, as shown in Figure
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a) Y state distillation circuit

b) A state distillation circuit
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Fig. 42. Distillation circuits.
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42 a). Since the probability of needing to stop distillation is asymptotically zero,

we will assume that the distillation procedure finishes every time. The cost of a

concatenated distillation circuit of a level L is given by the following equations.

DistillDoubleSmooth(|YL〉 ,L) = DistillDoubleSmooth(|YL〉 ,L− 1) + (127)

3DoubleSmoothSmoothMTCNOT(3) +

DoubleSmoothSmoothMTCNOT(2) +

max(MeasZDoubleSmooth,

MeasXDoubleSmooth)

DistillDoubleSmooth(|YL〉 , 0) = PrepDoubleSmooth |YL〉+ (128)

3DoubleSmoothSmoothMTCNOT(3) +

DoubleSmoothSmoothMTCNOT(2) +

max(MeasZDoubleSmooth,

MeasXDoubleSmooth).

• Logical |A〉: The distillation circuit for the |A〉 state is shown in Figure 42 b).

The cost of a concatenated distillation circuit is given as follows.

DistillDoubleSmooth(|AL〉 ,L) = DistillDoubleSmooth(|AL〉 ,L− 1) + (129)

4DoubleSmoothSmoothMTCNOT(7) +

DoubleSmoothSmoothMTCNOT(6) +

max(MeasZDoubleSmooth,

MeasXDoubleSmooth)

DistillDoubleSmooth |AL〉 , 0) = PrepDoubleSmooth |AL〉+ (130)

4DoubleSmoothSmoothMTCNOT(7) +

DoubleSmoothSmoothMTCNOT(6) +

max(MeasZDoubleSmooth,

MeasXDoubleSmooth)

15. Double smooth S and S†: The S gate on a smooth hole is done using the circuit shown

in Figure 43 b), which is from [37]. This requires a double smooth ancilla state |YL〉
(which we assumed was prepared at the start of the computation) and the application

two Hadamards and two CNOTs. The inverse S† is obtained by running the circuit

backwards.

DoubleSmoothS = 2DoubleSmoothSmoothCNOT + (131)

2DoubleSmoothH

DoubleSmoothS† = DoubleSmoothS (132)

16. Double smooth T and T †: The T gate on a double smooth hole can be done using

a measurement-based circuit. This circuit is shown in Figure 43 a). To implement the
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Meas

H H

a) Rotation gate using ancilla state

b) S gate using ancilla state

Fig. 43. Measurement-based rotation gate and S gate.

T gate, the input ancilla state 1√
2

(
|0〉+ eiθ |1〉

)
is initialized to be the |A〉 state. We

assume that the ancilla is prepared offline, and it doesn’t affect the running time. If the

measurement (in the Z basis) indicates that the T gate has been applied, the procedure

is done. If not, the T † operation actually has been applied and an S gate needs to

be applied to correct the state. Both events can occur with equal probability. The

cost of these operations is given below, the factor 1/2 represents the probability of the

application of the S gate.

DoubleSmoothT = DoubleSmoothSmoothCNOT + (133)

MeasZDoubleSmooth +
1

2
DoubleSmoothS

DoubleSmoothT† = DoubleSmoothT (134)

17. Double smooth H: To perform the logical H gate, we can use a measurement-based

rotation procedure similar to the procedure for implementing the T gate. However,

as described in [37], it is possible to do this with lower overhead using the following

procedure. First a patch of the surface surrounding smooth holes is cut out using

a chain of Z measurements, followed by an error correction round needed to correct

the sign of newly created weight three Z stabilizers. Next, a transversal round of H

operations is done inside the patch. A set of physical swap gates are then required to

reconnect the patch to the surface by shifting the patch (this requires as many cycles as

the size of the patch, which is assumed to be 3d). Then another error correction round

needs to be done. At this point, the qubit was converted to a rough one and neets

to be converted back. This requires a smooth ancilla in the |+〉 state, a CNOT gate,

followed by a measurement of the rough qubit in the Z basis. The cost of this operation
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is detailed below.

DoubleSmoothH = MeasZ + TEC + H + 3d× 3× CNOT + TEC + (135)

DoubleSmoothPrep |+〉+ DoubleRoughSmoothCNOT +

MeasZDoubleSmooth

From these, we can determine the execution time of the algorithm as follows.

Execution Time = DistillDoubleSmooth(|YL〉 ,L1) + (136)

(1/Algorithm.paralPrep |0〉)×Algorithm.numPrep |0〉 × PrepDoubleSmooth |0L〉+(137)

(1/Algorithm.paralPrep |+〉)×Algorithm.numPrep |+〉 × PrepDoubleSmooth |+L〉+(138)

(1/Algorithm.paralH)×Algorithm.numH×DoubleSmoothH + (139)

(1/Algorithm.paralS)×Algorithm.numS×DoubleSmoothS + (140)

(1/Algorithm.paralS†)×Algorithm.numS† ×DoubleSmoothS† + (141)

(1/Algorithm.paralT)×Algorithm.numT×DoubleSmoothT + (142)

(1/Algorithm.paralT†)×Algorithm.numT† ×DoubleSmoothT† + (143)

(1/Algorithm.paralCNOT)×Algorithm.numCNOT×DoubleSmoothSmoothCNOT +(144)

(1/Algorithm.paralMeasX)×Algorithm.MeasX×MeasXSmooth + (145)

(1/Algorithm.paralMeasZ)×Algorithm.MeasZ×MeasZSmooth (146)

13 Number of Gates

Our remaining task is to estimate the number of gates needed by the entire algorithm. We

obtain an accurate gate count for each gate type as follows. First, we estimate the number

of gates needed to perform error correction. Since error correction is performed continuously,

and all other operations require a small number of gates, this is the dominant factor in the fi-

nal gate count. The gate count for error correction is estimated for each of the three syndrome

extraction techniques (Shor, Steane, Knill) separately. Second, we add the small number of

gates required to perform logical operations. Note that these gate counts exclude syndrome

measurements (to prevent double counting), and therefore the estimate is independent of the

syndrome extraction method of choice.

In the interest of readability, we will assume that our variables refer to gates (i.e., the

variable is a vector with each entry corresponding to one gate type). For example, Prep |0〉
refers to a vector that is almost everywhere zero except a one in the entry that represents

the |0〉 state preparation. Similarly, H represents the Hadamard gate in the above vector

notation, etc.

1. No-op (stabilizer measurement cycle): All the stabilizers (site and plaquette)

are measured. Since the syndrome measurement circuit is different for each of the

three syndrome extraction methods (Steane, Shor and Knill), we have three different
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expressions for the gate count:

Steane.EC = Prep |0〉+ Prep |+〉+ 8CNOT + MeasX + MeasZ (147)

Shor.EC = 8Prep |0〉+ 2Prep |+〉+ 18CNOT + 4MeasX + 6MeasZ + 4H(148)

Knill.EC = Prep |0〉+ Prep |+〉+ 2CNOT + MeasX + MeasZ (149)

Below we express the number of gates that need to be performed (excluding syndrome

measurement) to implement each gate. We follow the same notation as in the previous

section.

2. Error-correction cycles for fault tolerance

TEC = EC× d (150)

3. Prepare single logical hole:

• Prepare smooth |0L〉 and |+L〉

PrepSmooth |0L〉 = d× d×MeasX (151)

PrepSmooth |+L〉 = d× d× Prep |+〉 (152)

• Prepare rough |0L〉 and |+L〉

PrepRough |0L〉 = d× d× Prep |0〉 (153)

PrepRough |+L〉 = d× d×MeasZ (154)

4. Measure logical hole in X or Z:

• Smooth holes

MeasXSmooth = 3× d× d×MeasX (155)

MeasZSmooth = 8× d× d×MeasZ (156)

• Rough holes

MeasXRough = 8× d× d×MeasZ (157)

MeasZRough = 3× d× d×MeasX (158)

5. Grow hole It is not possible to accurately quantify the number of gates when the size

of the region into which the hole grows is unknown. However, the number of gates does

not contribute significantly to the final gate count, and is reported here as 0.

GrowSmooth = 0 (159)

GrowRough = 0 (160)
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6. Shrink hole Similarly as for hole growth we can assume that the additional gate count

is negligible.

ShrinkRough = 0 (161)

ShrinkSmooth = 0 (162)

7. Double holes:

PrepDoubleSmooth |0L〉 = 2PrepSmooth |0L〉 (163)

PrepDoubleSmooth |+L〉 = 2PrepSmooth |+L〉 (164)

MeasXDoubleSmooth = MeasXSmooth (165)

MeasZDoubleSmooth = 2MeasZSmooth (166)

PrepDoubleRough |0L〉 = 2PrepRough |0L〉 (167)

PrepDoubleRough |+L〉 = 2PrepRough |+L〉 (168)

MeasZDoubleRough = MeasZRough (169)

MeasXDoubleRough = 2MeasXRough (170)

8. Low-level state injection (single smooth hole):

InjectSmooth |AL〉 = MeasZ + 4X + 6Z (171)

InjectSmooth |YL〉 = MeasZ + 4X + 6Z (172)

9. Preparing double smooth |YL〉 and |AL〉

PrepDoubleSmooth |AL〉 = InjectSmooth |AL〉 (173)

PrepDoubleSmooth |YL〉 = InjectSmooth |YL〉 (174)

10. Double smooth-rough CNOT

DoubleSmoothRoughCNOT = 0 (175)

(176)

11. Double smooth-rough multi-target CNOT

DoubleSmoothRoughMTCNOT(n) = 0 (177)

12. Double smooth-smooth CNOT

DoubleSmoothSmoothCNOT = PrepDoubleSmooth |0L〉+ (178)

PrepDoubleRough |+L〉+

MeasZDoubleSmooth +

MeasXDoubleRough
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13. Double smooth-smooth multi-target CNOT

DoubleSmoothSmoothMTCNOT(n) = PrepDoubleSmooth |0L〉+ (179)

PrepDoubleRough |+L〉+

MeasZDoubleSmooth +

MeasXDoubleRough

14. Prepare logical double smooth |YL〉 and |AL〉 to a level.

• Double smooth |YL〉

DistillDoubleSmooth(|YL〉 ,L) = 7DistillDoubleSmooth(|YL〉 ,L− 1) +(180)

3DoubleSmoothSmoothMTCNOT(3) +

DoubleSmoothSmoothMTCNOT(2) +

3MeasZDoubleSmooth +

3MeasXDoubleSmooth

DistillDoubleSmooth(|YL〉 , 0) = 7PrepDoubleSmooth |YL〉+ (181)

3DoubleSmoothSmoothMTCNOT(3) +

DoubleSmoothSmoothMTCNOT(2) +

3MeasZDoubleSmooth +

3MeasZDoubleSmooth.

• Logical |A〉

DistillDoubleSmooth(|AL〉 ,L) = 15DistillDoubleSmooth(|AL〉 ,L− 1) +(182)

5DoubleSmoothSmoothMTCNOT(7) +

DoubleSmoothSmoothMTCNOT(6) +

10MeasZDoubleSmooth +

4MeasXDoubleSmooth

DistillDoubleSmooth |AL〉 , 0) = 15PrepDoubleSmooth |AL〉+ (183)

5DoubleSmoothSmoothMTCNOT(7) +

DoubleSmoothSmoothMTCNOT(6) +

10MeasZDoubleSmooth +

4MeasXDoubleSmooth.

15. Double smooth S and S†

DoubleSmoothS = 2DoubleSmoothSmoothCNOT + (184)

2DoubleSmoothH

DoubleSmoothS† = DoubleSmoothS (185)
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16. Double smooth T and T †

DoubleSmoothT = DistillDoubleSmooth(|AL〉 ,L2) + (186)

DoubleSmoothSmoothCNOT +

MeasZDoubleSmooth +
1

2
DoubleSmoothS

DoubleSmoothT† = DoubleSmoothT. (187)

17. Double smooth H

DoubleSmoothH = 20× d×MeasZ + 21× d× d×H + 3d× 3× CNOT + (188)

DoubleSmoothPrep |+〉+ DoubleRoughSmoothCNOT +

MeasZDoubleSmooth.

By dividing the execution time and time needed to do one error correction obtained in

the previous section, we obtain the number of error-correction cycles, denoted EC Cycles.

From the above equations, we can determine the total gate count during the execution of the

algorithm.

Gate Count = Physical Area× EC Cycles× EC + (189)

DistillDoubleSmooth(|YL〉 ,L1) + (190)

Algorithm.numPrep |0〉 × PrepDoubleSmooth |0L〉+ (191)

Algorithm.numPrep |+〉 × PrepDoubleSmooth |+L〉+ (192)

Algorithm.numH×DoubleSmoothH + (193)

Algorithm.numS×DoubleSmoothS + (194)

Algorithm.numS† ×DoubleSmoothS† + (195)

Algorithm.numT×DoubleSmoothT + (196)

Algorithm.numT† ×DoubleSmoothT† + (197)

Algorithm.numCNOT×DoubleSmoothSmoothCNOT + (198)

Algorithm.MeasX×MeasXSmooth + (199)

Algorithm.MeasZ×MeasZSmooth (200)

14 Software Tools for Resource Estimation

The QuRE toolbox is implemented as a suite of Octave scripts that automatically generate

the resource estimates for a cross product of algorithms, quantum technologies, and error-

correction techniques. The software processes the following inputs. For each analyzed algo-

rithm, we require the number of logical gates of each type, the parallelization factor for these

gates (how many gates of each type can be safely scheduled in parallel), and the number of

logical qubits. These inputs are located in the ”Alg *.m” files. Another required input is

information about each combination of physical quantum technology and control protocol.

The required information is the time needed by each gate type, the error of the worst gate,
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and the error rate per unit of time. These inputs are located in a separate ”PMD *.m” file

for each quantum technology / control protocol combination.

The heart of the software are the recursive relations specifying the amount of resources

needed by the error-correcting codes at each level of concatenation, as well as the equations

specifying the behavior of the surface code. These relations appear in this report, and are

implemented in the ”ECC *.m” scripts.

Results for all combinations of algorithms, physical quantum technologies, error correction

protocols (the Chinese menu) are generated by running the ”Print.m” script. Estimates are

output in the out directory and the table directory. In the out directory, one file is generated

for each entry in the Chinese menu. The table directory includes results in a succinct form –

these results are also shown in Section 15 of this report.

A typical output in the “out” directory includes the following entries:

• Information if the error-correction threshold is met, and the target level of concatenation

to meet 50% circuit reliability. In case of the surface code, code distance is reported

instead of the concatenation level.

• Probability of success of the computation.

• Number of physical qubits needed. In case of Bacon-Shor code and the Knill’s post-

selection scheme which use ancilla factories we also report the number of qubits needed

by the ancilla factory in addition to the total qubit count.

• Running time of the algorithm in ns.

• The length of a time interval after which idle qubits must be error corrected, and the

number of error-correction rounds that must be done in total.

• A detailed gate count that includes the number of occurrences of each physical gate con-

struct during the entire computation. We report the following gate constructs: CNOT ,

SWAP , H, |+ > prep., |0 > prep., Xmeas., Zmeas., X, Y , Z, S and T .

For the Bacon Shor code and the Knill’s post-selection scheme which require ancilla fac-

tories the following information is reported:

• Time needed to produce and inject an ancillary state.

• A detailed gate count specifying the number of gates needed to produce one good an-

cillary state.

• The number of gates needed to produce all ancillary states required by all logical S and

T gates that occur in the algorithm.

Inspecting the results generated by our tool resulted in the following observations:

• Unlike topological error-correcting codes, the concatenated codes do not meet the thresh-

old of most quantum architectures.

• The number of gates and running time for topological and concatenated codes is com-

parable.
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• The Knill’s post-selection scheme has higher threshold than the Bacon-Shor and Steane

code, and therefore often requires fewer levels of concatenation and the resource require-

ments are lower.

The outputs of the software were validated by comparing the outputs against the equations

present in this report. Since the data input for all algorithms and quantum technology /

control protocol combinations have the same format, it was sufficient to validate results for

one algorithm and quantum technology / control protocol combination (we chose the ground

state estimation algorithm and superconducting qubits with primitive control). We verified

results for all four error-correcting codes.

The outputs for all entries of the Chinese menu appear in the ”out” and ”table” directory,

and selected results are also reported in Section 15.

15 Numerical Results

Here we present an overview of the numerical results obtained by the QuRE toolbox. We

only report the most basic properties for each error correcting code, namely the duration

and number of gates required to execute a single logical gate at a specified concatenation

level or code distance. For each combination of error correcting code, algorithm, and physical

quantum technology we also report the number of qubits, number of gates and running time

required by the quantum computer. More detailed results can be obtained by running the

QuRE toolbox.

The gate time for a logical gate at a specified level of concatenation of the concatenated

codes is obtained by QuRE by solving the the recursive equations in Sections 6, 7, and 8.

Tables 7, 8, and 9 show the results for the Steane code, the Bacon-Shor code, and the Knill

scheme respectively. The tables show results for one to five levels of concatenation. The

reported gate times are based on the superconducting quantum technology with primitive

control. Table 10 summarizes the gate times for the surface code, again using superconductors

with primitive control. The columns of the table show gate times for various choices of code

distance. Note that the surface code doesn’t need the SWAP operation, and we do not need

to distinguish a horizontal or vertical CNOT because the cost of both gates is identical. We

observe that while the gate time for concatenated codes increases sharply with increasing level

of concatenation, the gate time for the surface code increases only moderately with increasing

code distance.

The number of gates of each type required to execute the error correction operation (EC)
with the concatenated codes is reported in Tables 11, 12, and 13. The tables show results

for one to five levels of concatenation. We report the gate count for the error correction

operation because this is the most frequently repeated operation during computation, and

error correction is performed as part of any other gate. Detailed gate count for any logical

operation at any concatenation level can be obtained from the QuRE toolbox, but we do not

report these results here as the cost of error correction is the dominant factor.

The resources required by a quantum computer for each combination of algorithm, physical

quantum technology, control protocol and error correcting code appears in Table 15. The first

five columns identify the combination that is being evaluated, the next three columns show the

resources, and the last column shows the level of concatenation or code distance. Due to space

constraints, the algorithm, physical quantum technology, error correcting code, and syndrome
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extraction method are labeled with abbreviated labels. These abbreviations are summarized

in Table 14. The reported resources can be interepreted as follows. The number of qubits is

the total number of physical qubits needed by the quantum computer. The number of gates

is the total number of physical gates (across all types) that need to be executed. Finally, the

running time is the total time in nanoseconds needed to finish the computation.

Table 6. Gate time (in ns) for Steane code.

Operation(s) m=1 m=2 m=3 m=4 m=5

EC 876 2.16e+ 04 5.8e+ 05 1.58e+ 07 4.31e+ 08
hCNOT 1.02e+ 03 2.97e+ 04 8.16e+ 05 2.23e+ 07 6.09e+ 08
vCNOT 1.00e+ 03 2.85e+ 04 7.76e+ 05 2.11e+ 07 5.77e+ 08
hSWAP 1.01e+ 03 2.97e+ 04 8.17e+ 05 2.23e+ 07 6.1e+ 08
vSWAP 978 2.74e+ 04 7.44e+ 05 2.03e+ 07 5.53e+ 08
H 882 2.24e+ 04 6.02e+ 05 1.64e+ 07 4.47e+ 08
P|+〉 1.28e+ 03 3.05e+ 04 8.19e+ 05 2.23e+ 07 6.1e+ 08
P|0〉 1.28e+ 03 3.05e+ 04 8.19e+ 05 2.23e+ 07 6.1e+ 08
MX 876 2.16e+ 04 5.8e+ 05 1.58e+ 07 4.31e+ 08
MZ 876 2.16e+ 04 5.8e+ 05 1.58e+ 07 4.31e+ 08
X 886 2.25e+ 04 6.02e+ 05 1.64e+ 07 4.47e+ 08
Y 886 2.25e+ 04 6.02e+ 05 1.64e+ 07 4.47e+ 08
Z 877 2.24e+ 04 6.02e+ 05 1.64e+ 07 4.47e+ 08
Pcat 1.17e+ 03 3.29e+ 04 9.02e+ 05 2.46e+ 07 6.72e+ 08
S 5.29e+ 03 1.54e+ 05 4.22e+ 06 1.15e+ 08 3.14e+ 09
T 5.29e+ 03 1.54e+ 05 4.22e+ 06 1.15e+ 08 3.14e+ 09

Table 7. Gate time (in ns) for Bacon-Shor code.

Operation(s) m=1 m=2 m=3 m=4 m=5

EC 326 4.13e+ 03 6.05e+ 04 9.21e+ 05 1.42e+ 07
hCNOT 484 8.31e+ 03 1.31e+ 05 2.04e+ 06 3.15e+ 07
vCNOT 484 8.31e+ 03 1.31e+ 05 2.04e+ 06 3.15e+ 07
hSWAP 462 7.83e+ 03 1.23e+ 05 1.91e+ 06 2.94e+ 07
vSWAP 462 7.83e+ 03 1.23e+ 05 1.91e+ 06 2.94e+ 07
H 828 1.37e+ 04 2.13e+ 05 3.29e+ 06 5.07e+ 07
P|+〉 760 9.13e+ 03 1.33e+ 05 2.03e+ 06 3.12e+ 07
P|0〉 760 9.13e+ 03 1.33e+ 05 2.03e+ 06 3.12e+ 07
MX 342 4.48e+ 03 6.49e+ 04 9.86e+ 05 1.52e+ 07
MZ 336 4.47e+ 03 6.49e+ 04 9.86e+ 05 1.52e+ 07
X 336 4.47e+ 03 6.49e+ 04 9.86e+ 05 1.52e+ 07
Y 337 4.8e+ 03 6.94e+ 04 1.05e+ 06 1.62e+ 07
Z 327 4.46e+ 03 6.49e+ 04 9.86e+ 05 1.52e+ 07
Pcat 0 0 0 0 0
S 2.62e+ 03 4.41e+ 04 6.89e+ 05 1.06e+ 07 1.64e+ 08
T 3.44e+ 03 5.68e+ 04 8.85e+ 05 1.37e+ 07 2.11e+ 08
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Table 8. Gate time (in ns) for Knill/Steane code.

Operation(s) m=1 m=2 m=3 m=4 m=5

EC 912 5.21e+ 03 5.72e+ 04 6.38e+ 05 7.08e+ 06
hCNOT 1.05e+ 03 7.73e+ 03 8.43e+ 04 9.32e+ 05 1.04e+ 07
vCNOT 1.04e+ 03 7.53e+ 03 8.12e+ 04 8.97e+ 05 9.97e+ 06
hSWAP 358 4.12e+ 03 4.46e+ 04 4.94e+ 05 5.49e+ 06
vSWAP 324 3.51e+ 03 3.82e+ 04 4.24e+ 05 4.71e+ 06
H 918 5.44e+ 03 5.89e+ 04 6.57e+ 05 7.3e+ 06
P|+〉 640 3.94e+ 03 4.43e+ 04 4.93e+ 05 5.48e+ 06
P|0〉 640 3.93e+ 03 4.43e+ 04 4.93e+ 05 5.48e+ 06
MX 912 5.21e+ 03 5.72e+ 04 6.38e+ 05 7.08e+ 06
MZ 912 5.21e+ 03 5.72e+ 04 6.38e+ 05 7.08e+ 06
X 922 5.45e+ 03 5.89e+ 04 6.57e+ 05 7.3e+ 06
Y 922 5.45e+ 03 5.89e+ 04 6.57e+ 05 7.3e+ 06
Z 913 5.44e+ 03 5.89e+ 04 6.57e+ 05 7.3e+ 06
Pcat 1.21e+ 03 7.98e+ 03 9.03e+ 04 1.01e+ 06 1.12e+ 07
S 5.38e+ 03 3.53e+ 04 3.94e+ 05 4.38e+ 06 4.87e+ 07
T 5.38e+ 03 3.53e+ 04 3.94e+ 05 4.39e+ 06 4.87e+ 07

Table 9. Gate time (in ns) for surface code.

Operation(s) d=3 d=7 d=21 d=51 d=101

EC 166 166 166 166 166
CNOT 6.71e+ 03 1.53e+ 04 4.56e+ 04 1.1e+ 05 2.18e+ 05
H 4.78e+ 03 1.09e+ 04 3.22e+ 04 7.8e+ 04 1.54e+ 05
P|+〉 598 1.26e+ 03 3.59e+ 03 8.57e+ 03 1.69e+ 04
P|0〉 514 1.18e+ 03 3.5e+ 03 8.48e+ 03 1.68e+ 04
MX 16 16 16 16 16
MZ 10 10 10 10 10
S 2.3e+ 04 5.25e+ 04 1.56e+ 05 3.77e+ 05 7.45e+ 05
T 1.87e+ 04 4.27e+ 04 1.27e+ 05 3.07e+ 05 6.07e+ 05

Table 10. Gate count per error correction operation with Steane code.

Operation(s) m=1 m=2 m=3 m=4 m=5

hCNOT 14 1.85e+ 03 3.27e+ 05 5.84e+ 07 1.04e+ 10
vCNOT 28 3.85e+ 03 6.76e+ 05 1.2e+ 08 2.15e+ 10
hSWAP 18 5.29e+ 03 9.7e+ 05 1.74e+ 08 3.11e+ 10
vSWAP 15 4.84e+ 03 8.58e+ 05 1.52e+ 08 2.71e+ 10
H 7 959 1.69e+ 05 3e+ 07 5.36e+ 09
P|+〉 8 1.06e+ 03 1.87e+ 05 3.34e+ 07 5.95e+ 09
P|0〉 12 1.58e+ 03 2.81e+ 05 5e+ 07 8.92e+ 09
MX 20 2.64e+ 03 4.68e+ 05 8.34e+ 07 1.49e+ 10
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MZ 0 0 0 0 0
X 0 0 0 0 0
Y 0 0 0 0 0
Z 0 0 0 0 0
Pcat 0 0 0 0 0
S 0 0 0 0 0
T 0 0 0 0 0

Table 11. Gate count per error correction operation with Bacon-Shor code.

Operation(s) m=1 m=2 m=3 m=4 m=5

hCNOT 29 3.47e+ 03 5.47e+ 05 1.04e+ 08 2.09e+ 10
vCNOT 0 0 0 0 0
hSWAP 12 6.85e+ 03 1.66e+ 06 3.51e+ 08 7.24e+ 10
vSWAP 0 0 0 0 0
H 0 0 0 0 0
P|+〉 9 927 1.52e+ 05 2.94e+ 07 5.94e+ 09
P|0〉 9 1.14e+ 03 1.77e+ 05 3.34e+ 07 6.7e+ 09
MX 9 792 1.34e+ 05 2.67e+ 07 5.43e+ 09
MZ 9 792 1.34e+ 05 2.67e+ 07 5.43e+ 09
X 1 82 1.44e+ 04 2.87e+ 06 5.85e+ 08
Y 0 0 0 0 0
Z 1 82 1.44e+ 04 2.87e+ 06 5.85e+ 08
Pcat 0 0 0 0 0
S 0 0 0 0 0
T 0 0 0 0 0

Table 12. Gate count per error correction operation with Knill/Steane code.

Operation(s) m=1 m=2 m=3 m=4 m=5

hCNOT 14 1.12e+ 03 7.3e+ 04 4.98e+ 06 3.39e+ 08
vCNOT 28 1.06e+ 03 7.33e+ 04 4.98e+ 06 3.39e+ 08
hSWAP 18 1.85e+ 03 1.38e+ 05 9.51e+ 06 6.5e+ 08
vSWAP 15 2.22e+ 03 1.43e+ 05 9.63e+ 06 6.53e+ 08
H 7 28 112 448 1.79e+ 03
P|+〉 8 696 4.77e+ 04 3.25e+ 06 2.21e+ 08
P|0〉 12 696 4.77e+ 04 3.25e+ 06 2.21e+ 08
MX 20 736 4.79e+ 04 3.25e+ 06 2.21e+ 08
MZ 0 656 4.76e+ 04 3.25e+ 06 2.21e+ 08
X 0 0 0 0 0
Y 0 0 0 0 0
Z 0 0 0 0 0
Pcat 0 0 0 0 0
S 0 0 0 0 0



M. Suchara et al. 79

T 0 0 0 0 0

Table 13. List of abbreviations.

Algorithms Technologies Control

Binary Welded Tree: BWT Quantum Dots: DOT Primitive: PRI
Boolean Formula: BFA Neutral Atoms: NEU Optimal: OPT
Class Number: CNA Photonics I: PH1 Solovay Kitaev: SOK
Ground State Est.: GSE Photonics II: PH2 Trotter: TRO
Quant. Linear Syst.: QLS Superconductors: SUP Dynamically Cor. Gates: DCG
Shortest Vector: SVP Ion Traps: TRA
Triangle Finding: TFP

Error Correction Syndrome Extraction

Steane: STE Steane: STE
Bacon-Shor: BSH Shor: SHO
Knill’s scheme: C46 Knill: KNI
Surface code: TOP

Table 14. Final resource estimates.
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BWT NEU OPT TOP KNI 9.33e+ 10 6.08e+ 24 5.69e+ 18 83
BWT NEU OPT TOP SHO 1.87e+ 11 4.25e+ 25 6.06e+ 18 83
BWT NEU OPT TOP STE 6.22e+ 10 1.21e+ 25 5.98e+ 18 83
BWT NEU PRI TOP KNI 8.88e+ 10 5.65e+ 24 5.55e+ 18 81
BWT NEU PRI TOP SHO 1.78e+ 11 3.95e+ 25 5.92e+ 18 81
BWT NEU PRI TOP STE 5.92e+ 10 1.13e+ 25 5.84e+ 18 81
BWT NEU SOK TOP KNI 8.46e+ 09 1.73e+ 23 2.05e+ 18 25
BWT NEU SOK TOP SHO 1.69e+ 10 1.2e+ 24 2.39e+ 18 25
BWT NEU SOK TOP STE 5.64e+ 09 3.43e+ 23 2.31e+ 18 25
BWT NEU TRO TOP KNI 1.04e+ 11 1.97e+ 24 2.08e+ 18 23
BWT NEU TRO TOP SHO 2.07e+ 11 1.36e+ 25 2.53e+ 18 23
BWT NEU TRO TOP STE 6.9e+ 10 3.89e+ 24 2.43e+ 18 23
BWT PH2 PRI TOP KNI 3.25e+ 10 1.31e+ 24 3.46e+ 15 49
BWT PH2 PRI TOP SHO 6.5e+ 10 9.02e+ 24 4.4e+ 15 49
BWT PH2 PRI TOP STE 2.17e+ 10 2.58e+ 24 4.33e+ 15 49
BWT SUP OPT C46 STE 1.54e+ 13 1.06e+ 45 1.12e+ 19 6
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BWT SUP OPT TOP KNI 5.66e+ 10 7.87e+ 23 2.69e+ 15 17
BWT SUP OPT TOP SHO 1.13e+ 11 5.41e+ 24 3.58e+ 15 17
BWT SUP OPT TOP STE 3.77e+ 10 1.56e+ 24 3.16e+ 15 17
BWT SUP PRI BSH STE 1.26e+ 12 6.87e+ 32 4.67e+ 18 5
BWT SUP PRI C46 STE 9.87e+ 08 2.42e+ 27 8.09e+ 15 3
BWT SUP PRI STE STE 6.46e+ 09 2.01e+ 30 2.35e+ 18 4
BWT SUP PRI TOP KNI 9.59e+ 09 5.57e+ 22 9.57e+ 14 7
BWT SUP PRI TOP SHO 1.92e+ 10 3.81e+ 23 1.23e+ 15 7
BWT SUP PRI TOP STE 6.39e+ 09 1.09e+ 23 1.19e+ 15 7
BWT TRA DCG TOP KNI 8.45e+ 10 6.11e+ 24 1.98e+ 20 79
BWT TRA DCG TOP SHO 1.69e+ 11 3.94e+ 25 3.53e+ 20 79
BWT TRA DCG TOP STE 5.63e+ 10 1.13e+ 25 3.45e+ 20 79
BWT TRA OPT BSH STE 1.07e+ 07 1.93e+ 24 2.35e+ 18 2
BWT TRA OPT C46 STE 4.1e+ 07 3.32e+ 21 1.4e+ 18 2
BWT TRA OPT STE STE 1.35e+ 08 7.31e+ 24 1.77e+ 20 3
BWT TRA OPT TOP KNI 4.89e+ 09 2.26e+ 22 1.66e+ 18 5
BWT TRA OPT TOP SHO 9.78e+ 09 1.47e+ 23 2.6e+ 18 5
BWT TRA OPT TOP STE 3.26e+ 09 4.21e+ 22 2.55e+ 18 5
BWT TRA PRI BSH STE 1.07e+ 07 1.96e+ 24 2.35e+ 18 2
BWT TRA PRI C46 STE 4.1e+ 07 1.54e+ 22 1.4e+ 18 2
BWT TRA PRI STE STE 2.8e+ 06 1.39e+ 23 6.56e+ 18 2
BWT TRA PRI TOP KNI 2.63e+ 10 7.55e+ 22 1.02e+ 18 3
BWT TRA PRI TOP SHO 5.26e+ 10 4.83e+ 23 1.59e+ 18 3
BWT TRA PRI TOP STE 1.75e+ 10 1.39e+ 23 1.56e+ 18 3
BFA NEU OPT TOP KNI 1.88e+ 10 4.79e+ 40 2.22e+ 35 175
BFA NEU OPT TOP SHO 3.76e+ 10 3.35e+ 41 2.37e+ 35 175
BFA NEU OPT TOP STE 1.25e+ 10 9.57e+ 40 2.34e+ 35 175
BFA NEU PRI TOP KNI 1.88e+ 10 4.79e+ 40 2.22e+ 35 175
BFA NEU PRI TOP SHO 3.76e+ 10 3.35e+ 41 2.37e+ 35 175
BFA NEU PRI TOP STE 1.25e+ 10 9.57e+ 40 2.34e+ 35 175
BFA NEU SOK TOP KNI 1.86e+ 09 1.5e+ 39 8.13e+ 34 55
BFA NEU SOK TOP SHO 3.72e+ 09 1.05e+ 40 9.52e+ 34 55
BFA NEU SOK TOP STE 1.24e+ 09 3e+ 39 9.19e+ 34 55
BFA NEU TRO TOP KNI 4.66e+ 09 3.49e+ 39 8.23e+ 34 51
BFA NEU TRO TOP SHO 9.31e+ 09 2.44e+ 40 1.01e+ 35 51
BFA NEU TRO TOP STE 3.1e+ 09 6.96e+ 39 9.68e+ 34 51
BFA PH2 PRI TOP KNI 7.03e+ 09 1.1e+ 40 1.34e+ 32 107
BFA PH2 PRI TOP SHO 1.41e+ 10 7.66e+ 40 1.73e+ 32 107
BFA PH2 PRI TOP STE 4.69e+ 09 2.19e+ 40 1.7e+ 32 107
BFA SUP OPT C46 STE 4.02e+ 14 4.68e+ 63 1.48e+ 36 7
BFA SUP OPT TOP KNI 2.45e+ 09 1.32e+ 39 1.04e+ 32 37
BFA SUP OPT TOP SHO 4.9e+ 09 9.21e+ 39 1.41e+ 32 37
BFA SUP OPT TOP STE 1.63e+ 09 2.63e+ 39 1.24e+ 32 37
BFA SUP PRI BSH STE 3.99e+ 15 1.16e+ 56 8.91e+ 36 7
BFA SUP PRI C46 STE 2.57e+ 10 1.08e+ 46 1.07e+ 33 4
BFA SUP PRI STE STE 3.22e+ 13 1.13e+ 54 1.92e+ 37 6
BFA SUP PRI TOP KNI 5.17e+ 08 1.28e+ 38 4.11e+ 31 17
BFA SUP PRI TOP SHO 1.03e+ 09 8.96e+ 38 5.34e+ 31 17
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BFA SUP PRI TOP STE 3.45e+ 08 2.56e+ 38 5.2e+ 31 17
BFA TRA DCG TOP KNI 1.8e+ 10 4.47e+ 40 6.81e+ 36 171
BFA TRA DCG TOP SHO 3.59e+ 10 3.12e+ 41 1.31e+ 37 171
BFA TRA DCG TOP STE 1.2e+ 10 8.91e+ 40 1.28e+ 37 171
BFA TRA OPT BSH STE 3.39e+ 10 5.94e+ 43 4.52e+ 36 4
BFA TRA OPT C46 STE 1.03e+ 09 1.66e+ 40 1.84e+ 35 3
BFA TRA OPT STE STE 1.4e+ 10 8.43e+ 44 5.31e+ 37 4
BFA TRA OPT TOP KNI 2.17e+ 08 3.55e+ 37 5.94e+ 34 11
BFA TRA OPT TOP SHO 4.33e+ 08 2.46e+ 38 9.85e+ 34 11
BFA TRA OPT TOP STE 1.44e+ 08 7.02e+ 37 9.66e+ 34 11
BFA TRA PRI BSH STE 6.92e+ 08 1.71e+ 42 2.91e+ 35 3
BFA TRA PRI C46 STE 1.03e+ 09 2.5e+ 41 1.84e+ 35 3
BFA TRA PRI STE STE 2.91e+ 08 1.59e+ 43 1.94e+ 36 3
BFA TRA PRI TOP KNI 9.43e+ 08 9.99e+ 37 3.84e+ 34 7
BFA TRA PRI TOP SHO 1.89e+ 09 6.87e+ 38 6.33e+ 34 7
BFA TRA PRI TOP STE 6.29e+ 08 1.96e+ 38 6.2e+ 34 7
CNA NEU OPT TOP KNI 5.1e+ 23 4.01e+ 45 6.87e+ 26 119
CNA NEU OPT TOP SHO 1.02e+ 24 2.81e+ 46 7.32e+ 26 119
CNA NEU OPT TOP STE 3.4e+ 23 8.02e+ 45 7.23e+ 26 119
CNA NEU PRI TOP KNI 4.93e+ 23 3.81e+ 45 6.76e+ 26 117
CNA NEU PRI TOP SHO 9.86e+ 23 2.67e+ 46 7.2e+ 26 117
CNA NEU PRI TOP STE 3.29e+ 23 7.62e+ 45 7.11e+ 26 117
CNA NEU SOK TOP KNI 4.93e+ 22 1.24e+ 44 2.52e+ 26 37
CNA NEU SOK TOP SHO 9.86e+ 22 8.6e+ 44 2.94e+ 26 37
CNA NEU SOK TOP STE 3.29e+ 22 2.46e+ 44 2.84e+ 26 37
CNA NEU TRO TOP KNI 4.41e+ 22 1.05e+ 44 2.62e+ 26 35
CNA NEU TRO TOP SHO 8.82e+ 22 7.31e+ 44 3.21e+ 26 35
CNA NEU TRO TOP STE 2.94e+ 22 2.09e+ 44 3.07e+ 26 35
CNA PH2 PRI TOP KNI 1.81e+ 23 8.75e+ 44 4.15e+ 23 71
CNA PH2 PRI TOP SHO 3.63e+ 23 6.07e+ 45 5.3e+ 23 71
CNA PH2 PRI TOP STE 1.21e+ 23 1.73e+ 45 5.21e+ 23 71
CNA SUP OPT C46 STE 2.2e+ 27 5.87e+ 56 1.02e+ 28 7
CNA SUP OPT TOP KNI 2.25e+ 22 3.8e+ 43 3.28e+ 23 25
CNA SUP OPT TOP SHO 4.5e+ 22 2.64e+ 44 4.39e+ 23 25
CNA SUP OPT TOP STE 1.5e+ 22 7.56e+ 43 3.87e+ 23 25
CNA SUP PRI BSH STE 2.6e+ 27 2.4e+ 58 5.29e+ 27 6
CNA SUP PRI C46 STE 5.63e+ 21 7.68e+ 46 6.62e+ 23 3
CNA SUP PRI STE STE 4.78e+ 25 1.22e+ 56 5.19e+ 27 5
CNA SUP PRI TOP KNI 4.36e+ 21 3.26e+ 42 1.24e+ 23 11
CNA SUP PRI TOP SHO 8.71e+ 21 2.26e+ 43 1.6e+ 23 11
CNA SUP PRI TOP STE 2.9e+ 21 6.46e+ 42 1.56e+ 23 11
CNA TRA DCG TOP KNI 4.76e+ 23 3.96e+ 45 2.27e+ 28 115
CNA TRA DCG TOP SHO 9.52e+ 23 2.64e+ 46 4.2e+ 28 115
CNA TRA DCG TOP STE 3.17e+ 23 7.55e+ 45 4.1e+ 28 115
CNA TRA OPT BSH STE 2.21e+ 22 1.22e+ 46 2.68e+ 27 3
CNA TRA OPT C46 STE 5.63e+ 21 1.26e+ 45 1.26e+ 27 3
CNA TRA OPT STE STE 2.07e+ 22 9.11e+ 46 1.44e+ 28 3
CNA TRA OPT TOP KNI 1.76e+ 21 9.01e+ 41 1.85e+ 26 7
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CNA TRA OPT TOP SHO 3.53e+ 21 6.04e+ 42 2.97e+ 26 7
CNA TRA OPT TOP STE 1.18e+ 21 1.73e+ 42 2.92e+ 26 7
CNA TRA PRI BSH STE 4.5e+ 20 3.61e+ 44 1.72e+ 26 2
CNA TRA PRI C46 STE 2.25e+ 20 1.53e+ 44 1.14e+ 26 2
CNA TRA PRI STE STE 4.32e+ 20 1.73e+ 45 5.29e+ 26 2
CNA TRA PRI TOP KNI 9e+ 20 3.33e+ 41 1.34e+ 26 5
CNA TRA PRI TOP SHO 1.8e+ 21 2.22e+ 42 2.14e+ 26 5
CNA TRA PRI TOP STE 6e+ 20 6.35e+ 41 2.1e+ 26 5
GSE NEU OPT TOP KNI 1.93e+ 09 6.18e+ 32 2.8e+ 28 129
GSE NEU OPT TOP SHO 3.86e+ 09 4.32e+ 33 2.98e+ 28 129
GSE NEU OPT TOP STE 1.29e+ 09 1.23e+ 33 2.94e+ 28 129
GSE NEU PRI TOP KNI 1.93e+ 09 6.18e+ 32 2.8e+ 28 129
GSE NEU PRI TOP SHO 3.86e+ 09 4.32e+ 33 2.98e+ 28 129
GSE NEU PRI TOP STE 1.29e+ 09 1.23e+ 33 2.94e+ 28 129
GSE NEU SOK TOP KNI 1.95e+ 08 2.05e+ 31 1.06e+ 28 41
GSE NEU SOK TOP SHO 3.89e+ 08 1.42e+ 32 1.23e+ 28 41
GSE NEU SOK TOP STE 1.3e+ 08 4.07e+ 31 1.19e+ 28 41
GSE NEU TRO TOP KNI 1.42e+ 09 1.36e+ 32 1.05e+ 28 37
GSE NEU TRO TOP SHO 2.84e+ 09 9.44e+ 32 1.28e+ 28 37
GSE NEU TRO TOP STE 9.48e+ 08 2.7e+ 32 1.23e+ 28 37
GSE PH2 PRI TOP KNI 7.23e+ 08 1.48e+ 32 1.76e+ 25 79
GSE PH2 PRI TOP SHO 1.45e+ 09 1.02e+ 33 2.25e+ 25 79
GSE PH2 PRI TOP STE 4.82e+ 08 2.93e+ 32 2.21e+ 25 79
GSE SUP OPT C46 STE 3.73e+ 14 1.27e+ 58 3.95e+ 29 7
GSE SUP OPT TOP KNI 8.74e+ 08 6.56e+ 31 1.45e+ 25 29
GSE SUP OPT TOP SHO 1.75e+ 09 4.52e+ 32 1.94e+ 25 29
GSE SUP OPT TOP STE 5.83e+ 08 1.3e+ 32 1.71e+ 25 29
GSE SUP PRI BSH STE 4.8e+ 13 1.22e+ 45 2.29e+ 29 6
GSE SUP PRI C46 STE 2.39e+ 10 2.91e+ 40 2.86e+ 26 4
GSE SUP PRI STE STE 5.61e+ 10 5.61e+ 42 2.04e+ 29 5
GSE SUP PRI TOP KNI 1.76e+ 08 5.95e+ 30 5.6e+ 24 13
GSE SUP PRI TOP SHO 3.51e+ 08 4.09e+ 31 7.19e+ 24 13
GSE SUP PRI TOP STE 1.17e+ 08 1.17e+ 31 7e+ 24 13
GSE TRA DCG TOP KNI 1.81e+ 09 6.57e+ 32 9.93e+ 29 125
GSE TRA DCG TOP SHO 3.62e+ 09 4.24e+ 33 1.77e+ 30 125
GSE TRA DCG TOP STE 1.21e+ 09 1.21e+ 33 1.74e+ 30 125
GSE TRA OPT BSH STE 4.08e+ 08 6.82e+ 33 1.16e+ 29 3
GSE TRA OPT C46 STE 9.57e+ 08 3.84e+ 34 4.89e+ 28 3
GSE TRA OPT STE STE 1.17e+ 09 2.04e+ 37 1.53e+ 31 4
GSE TRA OPT TOP KNI 8.42e+ 07 2.17e+ 30 9.28e+ 27 9
GSE TRA OPT TOP SHO 1.68e+ 08 1.42e+ 31 1.47e+ 28 9
GSE TRA OPT TOP STE 5.61e+ 07 4.08e+ 30 1.44e+ 28 9
GSE TRA PRI BSH STE 8.33e+ 06 4.89e+ 31 7.47e+ 27 2
GSE TRA PRI C46 STE 3.98e+ 07 7.04e+ 30 4.44e+ 27 2
GSE TRA PRI STE STE 2.43e+ 07 3.85e+ 35 5.63e+ 29 3
GSE TRA PRI TOP KNI 3.67e+ 08 5.38e+ 30 5.26e+ 27 5
GSE TRA PRI TOP SHO 7.34e+ 08 3.5e+ 31 8.26e+ 27 5
GSE TRA PRI TOP STE 2.45e+ 08 1e+ 31 8.11e+ 27 5
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QLS NEU OPT TOP KNI 1.51e+ 11 1.03e+ 48 5.94e+ 41 227
QLS NEU OPT TOP SHO 3.02e+ 11 7.19e+ 48 6.33e+ 41 227
QLS NEU OPT TOP STE 1.01e+ 11 2.05e+ 48 6.25e+ 41 227
QLS NEU PRI TOP KNI 1.48e+ 11 1e+ 48 5.89e+ 41 225
QLS NEU PRI TOP SHO 2.97e+ 11 7e+ 48 6.28e+ 41 225
QLS NEU PRI TOP STE 9.89e+ 10 2e+ 48 6.19e+ 41 225
QLS NEU SOK TOP KNI 1.48e+ 10 3.23e+ 46 2.2e+ 41 71
QLS NEU SOK TOP SHO 2.96e+ 10 2.25e+ 47 2.56e+ 41 71
QLS NEU SOK TOP STE 9.85e+ 09 6.43e+ 46 2.48e+ 41 71
QLS NEU TRO TOP KNI 1.79e+ 11 3.62e+ 47 2.22e+ 41 65
QLS NEU TRO TOP SHO 3.58e+ 11 2.51e+ 48 2.71e+ 41 65
QLS NEU TRO TOP STE 1.19e+ 11 7.18e+ 47 2.6e+ 41 65
QLS PH2 PRI TOP KNI 5.5e+ 10 2.36e+ 47 3.69e+ 38 137
QLS PH2 PRI TOP SHO 1.1e+ 11 1.63e+ 48 4.7e+ 38 137
QLS PH2 PRI TOP STE 3.67e+ 10 4.67e+ 47 4.62e+ 38 137
QLS SUP OPT C46 STE 9.34e+ 15 5.07e+ 78 5.31e+ 43 8
QLS SUP OPT TOP KNI 1.02e+ 11 1.56e+ 47 2.97e+ 38 49
QLS SUP OPT TOP SHO 2.03e+ 11 1.07e+ 48 3.95e+ 38 49
QLS SUP OPT TOP STE 6.78e+ 10 3.09e+ 47 3.49e+ 38 49
QLS SUP PRI BSH STE 2.38e+ 15 5.39e+ 61 4.28e+ 43 7
QLS SUP PRI C46 STE 2.39e+ 10 1.53e+ 55 3.46e+ 39 4
QLS SUP PRI STE STE 3.12e+ 12 3.83e+ 59 6.72e+ 43 6
QLS SUP PRI TOP KNI 1.87e+ 10 1.23e+ 46 1.09e+ 38 21
QLS SUP PRI TOP SHO 3.73e+ 10 8.48e+ 46 1.4e+ 38 21
QLS SUP PRI TOP STE 1.24e+ 10 2.43e+ 46 1.36e+ 38 21
QLS TRA DCG TOP KNI 1.43e+ 11 1.11e+ 48 2.12e+ 43 221
QLS TRA DCG TOP SHO 2.86e+ 11 7.18e+ 48 3.79e+ 43 221
QLS TRA DCG TOP STE 9.54e+ 10 2.06e+ 48 3.71e+ 43 221
QLS TRA OPT BSH STE 2.02e+ 10 6.92e+ 50 2.17e+ 43 4
QLS TRA OPT C46 STE 2.39e+ 10 1.53e+ 55 6.58e+ 42 4
QLS TRA OPT STE STE 6.5e+ 10 1.39e+ 54 5.07e+ 45 5
QLS TRA OPT TOP KNI 9.53e+ 09 4.89e+ 45 1.85e+ 41 15
QLS TRA OPT TOP SHO 1.91e+ 10 3.23e+ 46 2.94e+ 41 15
QLS TRA OPT TOP STE 6.35e+ 09 9.25e+ 45 2.89e+ 41 15
QLS TRA PRI BSH STE 4.12e+ 08 4.05e+ 48 1.41e+ 42 3
QLS TRA PRI C46 STE 9.58e+ 08 2.02e+ 49 5.91e+ 41 3
QLS TRA PRI STE STE 1.35e+ 09 2.63e+ 52 1.86e+ 44 4
QLS TRA PRI TOP KNI 7.66e+ 10 2.9e+ 46 1.37e+ 41 11
QLS TRA PRI TOP SHO 1.53e+ 11 1.91e+ 47 2.16e+ 41 11
QLS TRA PRI TOP STE 5.11e+ 10 5.47e+ 46 2.13e+ 41 11
SVP NEU OPT TOP KNI 1.8e+ 25 4.63e+ 50 2.25e+ 30 153
SVP NEU OPT TOP SHO 3.6e+ 25 3.24e+ 51 2.4e+ 30 153
SVP NEU OPT TOP STE 1.2e+ 25 9.25e+ 50 2.36e+ 30 153
SVP NEU PRI TOP KNI 1.75e+ 25 4.45e+ 50 2.22e+ 30 151
SVP NEU PRI TOP SHO 3.5e+ 25 3.11e+ 51 2.37e+ 30 151
SVP NEU PRI TOP STE 1.17e+ 25 8.89e+ 50 2.33e+ 30 151
SVP NEU SOK TOP KNI 1.7e+ 24 1.36e+ 49 8.06e+ 29 47
SVP NEU SOK TOP SHO 3.39e+ 24 9.49e+ 49 9.44e+ 29 47
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SVP NEU SOK TOP STE 1.13e+ 24 2.71e+ 49 9.11e+ 29 47
SVP NEU TRO TOP KNI 1.56e+ 24 1.2e+ 49 8.43e+ 29 45
SVP NEU TRO TOP SHO 3.11e+ 24 8.33e+ 49 1.04e+ 30 45
SVP NEU TRO TOP STE 1.04e+ 24 2.38e+ 49 9.92e+ 29 45
SVP PH2 PRI TOP KNI 6.64e+ 24 1.05e+ 50 1.35e+ 27 93
SVP PH2 PRI TOP SHO 1.33e+ 25 7.3e+ 50 1.74e+ 27 93
SVP PH2 PRI TOP STE 4.43e+ 24 2.09e+ 50 1.71e+ 27 93
SVP SUP OPT C46 STE 4.69e+ 28 5.36e+ 61 1.93e+ 31 7
SVP SUP OPT TOP KNI 8.36e+ 23 4.66e+ 48 1.08e+ 27 33
SVP SUP OPT TOP SHO 1.67e+ 24 3.25e+ 49 1.46e+ 27 33
SVP SUP OPT TOP STE 5.58e+ 23 9.3e+ 48 1.28e+ 27 33
SVP SUP PRI BSH STE 5.54e+ 28 8.01e+ 62 8.3e+ 30 6
SVP SUP PRI C46 STE 3e+ 24 2.35e+ 54 1.4e+ 28 4
SVP SUP PRI STE STE 4.89e+ 28 2.29e+ 64 2.57e+ 32 6
SVP SUP PRI TOP KNI 1.73e+ 23 4.39e+ 47 4.22e+ 26 15
SVP SUP PRI TOP SHO 3.46e+ 23 3.06e+ 48 5.47e+ 26 15
SVP SUP PRI TOP STE 1.15e+ 23 8.76e+ 47 5.32e+ 26 15
SVP TRA DCG TOP KNI 1.71e+ 25 4.35e+ 50 6.98e+ 31 149
SVP TRA DCG TOP SHO 3.41e+ 25 3.01e+ 51 1.34e+ 32 149
SVP TRA DCG TOP STE 1.14e+ 25 8.6e+ 50 1.3e+ 32 149
SVP TRA OPT BSH STE 4.71e+ 23 4.08e+ 50 4.19e+ 30 3
SVP TRA OPT C46 STE 1.2e+ 23 5.09e+ 49 2.39e+ 30 3
SVP TRA OPT STE STE 2.12e+ 25 1.71e+ 55 7.09e+ 32 4
SVP TRA OPT TOP KNI 6.22e+ 22 9.83e+ 46 5.72e+ 29 9
SVP TRA OPT TOP SHO 1.24e+ 23 6.74e+ 47 9.41e+ 29 9
SVP TRA OPT TOP STE 4.15e+ 22 1.93e+ 47 9.23e+ 29 9
SVP TRA PRI BSH STE 4.71e+ 23 3.75e+ 52 4.19e+ 30 3
SVP TRA PRI C46 STE 4.8e+ 21 6.21e+ 48 2.17e+ 29 2
SVP TRA PRI STE STE 4.42e+ 23 3.23e+ 53 2.6e+ 31 3
SVP TRA PRI TOP KNI 3.76e+ 22 4.66e+ 46 4.49e+ 29 7
SVP TRA PRI TOP SHO 7.53e+ 22 3.19e+ 47 7.36e+ 29 7
SVP TRA PRI TOP STE 2.51e+ 22 9.12e+ 46 7.22e+ 29 7
TFP NEU OPT TOP KNI 1.44e+ 14 5.82e+ 31 3.53e+ 22 91
TFP NEU OPT TOP SHO 2.87e+ 14 4.07e+ 32 3.77e+ 22 91
TFP NEU OPT TOP STE 9.58e+ 13 1.16e+ 32 3.72e+ 22 91
TFP NEU PRI TOP KNI 1.37e+ 14 5.44e+ 31 3.46e+ 22 89
TFP NEU PRI TOP SHO 2.75e+ 14 3.81e+ 32 3.68e+ 22 89
TFP NEU PRI TOP STE 9.16e+ 13 1.09e+ 32 3.64e+ 22 89
TFP NEU SOK TOP KNI 1.46e+ 13 1.94e+ 30 1.33e+ 22 29
TFP NEU SOK TOP SHO 2.92e+ 13 1.35e+ 31 1.56e+ 22 29
TFP NEU SOK TOP STE 9.73e+ 12 3.85e+ 30 1.5e+ 22 29
TFP NEU TRO TOP KNI 1.27e+ 13 1.57e+ 30 1.36e+ 22 27
TFP NEU TRO TOP SHO 2.53e+ 13 1.09e+ 31 1.67e+ 22 27
TFP NEU TRO TOP STE 8.43e+ 12 3.12e+ 30 1.6e+ 22 27
TFP PH2 PRI TOP KNI 5.25e+ 13 1.32e+ 31 2.16e+ 19 55
TFP PH2 PRI TOP SHO 1.05e+ 14 9.15e+ 31 2.76e+ 19 55
TFP PH2 PRI TOP STE 3.5e+ 13 2.62e+ 31 2.71e+ 19 55
TFP SUP OPT C46 STE 4.24e+ 16 1.52e+ 46 5.97e+ 22 6
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TFP SUP OPT TOP KNI 6.27e+ 12 5.41e+ 29 1.68e+ 19 19
TFP SUP OPT TOP SHO 1.25e+ 13 3.75e+ 30 2.24e+ 19 19
TFP SUP OPT TOP STE 4.18e+ 12 1.08e+ 30 1.98e+ 19 19
TFP SUP PRI BSH STE 1.25e+ 18 7.34e+ 44 3.37e+ 23 6
TFP SUP PRI C46 STE 2.71e+ 12 2.41e+ 33 4.32e+ 19 3
TFP SUP PRI STE STE 2.3e+ 16 3.83e+ 42 3.38e+ 23 5
TFP SUP PRI TOP KNI 1.41e+ 12 5.79e+ 28 6.83e+ 18 9
TFP SUP PRI TOP SHO 2.81e+ 12 4.01e+ 29 8.8e+ 18 9
TFP SUP PRI TOP STE 9.37e+ 11 1.15e+ 29 8.57e+ 18 9
TFP TRA DCG TOP KNI 1.31e+ 14 5.57e+ 31 1.16e+ 24 87
TFP TRA DCG TOP SHO 2.63e+ 14 3.71e+ 32 2.13e+ 24 87
TFP TRA DCG TOP STE 8.76e+ 13 1.06e+ 32 2.09e+ 24 87
TFP TRA OPT BSH STE 2.17e+ 11 1.2e+ 29 1.09e+ 22 2
TFP TRA OPT C46 STE 1.08e+ 11 5.24e+ 28 7.44e+ 21 2
TFP TRA OPT STE STE 9.99e+ 12 2.86e+ 33 9.36e+ 23 3
TFP TRA OPT TOP KNI 4.34e+ 11 1.08e+ 28 9.01e+ 21 5
TFP TRA OPT TOP SHO 8.68e+ 11 7.19e+ 28 1.44e+ 22 5
TFP TRA OPT TOP STE 2.89e+ 11 2.06e+ 28 1.41e+ 22 5
TFP TRA PRI BSH STE 2.17e+ 11 1.1e+ 31 1.09e+ 22 2
TFP TRA PRI C46 STE 1.08e+ 11 4.81e+ 30 7.44e+ 21 2
TFP TRA PRI STE STE 2.08e+ 11 5.43e+ 31 3.45e+ 22 2
TFP TRA PRI TOP KNI 4.34e+ 11 1.08e+ 28 9.01e+ 21 5
TFP TRA PRI TOP SHO 8.68e+ 11 7.19e+ 28 1.44e+ 22 5
TFP TRA PRI TOP STE 2.89e+ 11 2.06e+ 28 1.41e+ 22 5

16 Conclusion

This report quantifies the resources needed to run a variety of quantum programs on quantum

computers with realistic properties. We quantify the number of physical qubits required to run

each program, the execution time on each of the physical technologies of choice, the probability

of success of the computation, as well as gate count for each quantum gate type. In the

course of performing this resource estimation, we made a number of interesting observations.

One of our most interesting observations is the fact that the amount of resources needed

to perform topological versus concatenated quantum error correction is comparable. This is

surprising because the nature of the codes and the model of quantum computation is very

different. However, we still believe that topological error correction is superior in systems

with a large number of qubits. Due to its much higher error-correction threshold, topological

error correction is able to protect quantum information in systems that cannot be protected

by concatenated codes.
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Appendix A

17.1 Implementation of the tile operations of the C4 code

In the following, “a→ b” means applying a CNOT gate with a being the control qubit and b

being the target qubit. “a⇔ b” means applying a SWAP gate on qubits a and b.

zED
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Time step 1:

O O O O O

O d1 O O d3

O P|+〉(a1) P|+〉(a5) P|0〉(a7) P|+〉(a3)

O P|0〉(a2) P|+〉(a6) P|0〉(a8) P|0〉(a4)

O d2 O O d4

Time step 2:

O O O O O

O d1 O O d3

O a1 a5 → a7 a3

↓ ↓
O a2 a6 → a8 a4

O d2 O O d4.

Time step 3:

O O O O O

O d1 O O d3

O a1 → a5 a7 ← a3

O a2 → a6 a8 ← a4

O d2 O O d4

Time step 4:

O O O O O

O d1 O O d3

↓ ↓
O a1 a5 a7 a3

O a2 a6 a8 a4

↑ ↑
O d2 O O d4
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Time step 5:

O O O O O

O MX(d1) O O MX(d3)

O MZ(a1) a5 a7 MZ(a3)

O MZ(a2) a6 a8 MZ(a4)

O MX(d2) O O MX(d4)

We choose the index such that a quantum teleportation occurs on the qubits di, ai, ai+4
for i = 1, 2, 3, 4. Observe that the data qubits d1, d2, d3, d4 are transferred to the center after
teleportation and no SWAPs are needed here. However, the error detection ED+ for structure
II needs two SWAPs and it takes one more step. Its first time step is initialized as follows:

O O O O O

O O P|+〉(a1) P|0〉(a3) O

O P|+〉(a5) d1 d3 P|+〉(a7)

O P|0〉(a6) d2 d4 P|0〉(a8)

O O P|+〉(a2) P|0〉(a4) O

.

In addition, applying the Pauli operators X or Z to complete the teleportation may takes
one or two more steps, but this is not shown. The ED0 for structure 1 at time step 1 is as
follows and the rest of the steps are similar to those of the ED+:

O O O O O

O d1 P|+〉(a1) P|0〉(a3) d3

O O P|+〉(a5) P|+〉(a7) O

O O P|0〉(a6) P|0〉(a8) O

O d2 P|+〉(a2) P|0〉(a4) d4

.

We found the operation and required time of ED0 are the same as those of ED+ and we omit

the subscripts 0 or +.

Remark: after a logical Hadamard gate, the labels of data qubits 2 and 3 are switched.

This can be fixed by applying appropriate SWAPs and it takes 2 more time steps in structures

I or II. However, we don’t adjust it until a CNOT gate is operating on two tiles with different

labels.

CNOT gate Consider the vhCNOT from |q1q2q3q4〉 to |d1d2d3d4〉.
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Time step 0:

O O O O O

O q1 O O q3

O O O O O

O O O O O

O q2 O O q4

O O O O O

O d1 O O d3

O O O O O

O O O O O

O d2 O O d4

Time step 1:

O O O O O

O ⇔ q1 O O q3 ⇔ O

O O O O O

O O O O O

O ⇔ q2 O O q4 ⇔ O

O O O O O
m m

O d1 O O d3

O O O O O

O O O O O
m m

O d2 O O d4
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Time step 2:

O O O O O

q1 O O O O q3

m m
O O O O O O

O O O O O

q2 O O O O q4

m m m m
O d1 O O d3 O

O O O O O

O O O O O
m m

O d2 O O d4

O O O O O

Time step 3:

O O O O O

O O O O O

q1 O O O O q3

m m
O O O O O O

m m
O d1 O O d3

q2 O O O O q4

m m
O O O O O O

m m
O d2 O O d4

O O O O O

O O O O O



M. Suchara et al. 93

Time step 4:

O O O O O

O O O O O

O O O O O

q1 → d1 O O d3 ← q3

O O O O O

O O O O O

q2 → d2 O O d4 ← q4

O O O O O

O O O O O

O O O O O

Time step 5:

O O O O O

O O O O O

O O O O O O
m m
q1 d1 O O d3 q3

m m
O O O O O

O O O O O O
m m
q2 d2 O O d4 q4

m m
O O O O O

O O O O O

O O O O O
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Time step 6:

O O O O O

O O O O O O
m m
q1 O O O O q3

O O O O O

O d1 O O d3 O
m m m m
q2 O O O O q4

O O O O O

O d2 O O d4

m m
O O O O O

O O O O O

Time step 7:

O O O O O

q1 ⇔ O O O O ⇔ q3

O O O O O

O O O O O

q2 ⇔ O O O O ⇔ q4

O d1 O O d3

m m
O O O O O

O O O O O

O d2 O O d4

m m
O O O O O
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SWAP gate Consider the vSWAP : Time step 0:

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

O d1 O O d3

O O O O O

O O O O O

O d2 O O d4

Time step 1:

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O
m m

O d1 O O d3

O O O O O

O O O O O
m m

O d2 O O d4
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Time step 2:

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O
m m

O d1 O O d3

O O O O O

O O O O O
m m

O d2 O O d4

O O O O O

Time step 3:

O O O O O

O O O O O

O O O O O

O O O O O
m m

O d1 O O d3

O O O O O

O O O O O
m m

O d2 O O d4

O O O O O

O O O O O
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Time step 4:

O O O O O

O O O O O

O O O O O
m m

O d1 O O d3

O O O O O

O O O O O
m m

O d2 O O d4

O O O O O

O O O O O

O O O O O

Time step 5:

O O O O O

O O O O O
m m

O d1 O O d3

O O O O O

O O O O O
m m

O d2 O O d4

O O O O O

O O O O O

O O O O O

O O O O O
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P|0〉 and P|+〉 The logical state preparation circuit P|0〉 in Fig. 22: Time step 1:

O O O O O

O O P|+〉(a1) P|0〉(a3) O

O O O O O

O O O O O

O O P|+〉(a2) P|0〉(a4) O

Time step 2:

O O O O O

O O a1 → a3 O

O O O O O

O O O O O

O O a2 → a4 O

Time step 3:

O O O O O

O O ⇔ a1 a3 ⇔ O

O O O O O

O O O O O

O O ⇔ a2 O a4 ⇔ O

The logical state preparation circuit P|+〉 in Fig. 22: Time step 1:

O O O O O

O O O O O

O P|+〉(a1) O O P|0〉(a3)

O P|+〉(a2) O O P|0〉(a4)

O O O O O
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Time step 2:

O O O O O

O O O O O

O a1 O O a3

↓ ↓
O a2 O O a4

O O O O O

Time step 3:

O O O O O

O O O O O
m m

O a1 O O a3

O a2 O O a4

m m
O O O O O

decoding circuit

The decoding circuit of the C4 code when the spectator state is |0〉 in Fig. 26: Time step

1:

O O O O O

O q1 ⇔ O O ⇔ q3

O O O O O

O O O O O

O q2 ⇔ O O ⇔ q4

Time step 2:

O O O O O

O O q1 ← q3 O

O O O O O

O O O O O

O O q2 ← q4 O
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Time step 3:

O O O O O

O O q1 q3 O
m

O O O O O

O O O O O
m

O O q2 q4 O

Time step 4:

O O O O O

O O O q3 O

O O q1 O O
↓

O O q2 O O

O O O q4 O

The decoding circuit when the spectator state is |+〉 in Fig. 26: Time step 1:

O O O O O

O q1 O O q3

m m
O O O O O

O O O O O
m m

O q2 O O q4

Time step 2:

O O O O O

O O O O O

O q1 O O q3

↓ ↓
O q2 O O q4

O O O O O
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Time step 3:

O O O O O

O O O O O

O q1 ⇔ O O ⇔ q3

O q2 O O q4

O O O O O

Time step 4:

O O O O O

O O O O O

O O q1 ← q3 O

O q2 O O q4

O O O O O

S and T gates Let |q1q2q3q4〉 denote the |+i〉 state and |d1d2d3d4〉 be the data qubit in Fig.

13.

Implementation of the S gate:

Time step 1:

O O O O O

O ⇔ q1 O O q3 ⇔ O

O O O O O

O O O O O

O ⇔ q2 O O q4 ⇔ O

O O O O O

O d1 O O d3

O O O O O

O O O O O

O d2 O O d4
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Time step 2:

O O O O O

q1 O O O O q3

m m
O O O O O O

O O O O O

q2 O O O O q4

m m
O O O O O O

O d1 O O d3

O O O O O

O O O O O

O d2 O O d4

Time step 3:

O O O O O

O O O O O

q1 O O O O q3

m m
O O O O O O

O O O O O

q2 O O O O q4

m m
O d1 O O d3 O

O O O O O

O O O O O

O d2 O O d4
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Time step 4:

O O O O O

O O O O O

O O O O O

q1 O O O O q3

m m
O O O O O O

O O O O O

q2 d1 O O d3 q4

m m
O O O O O O

O O O O O

O d2 O O d4

Time step 5:

O O O O O

O O O O O

O O O O O

O O O O O

q1 O O O O q3

m m
O O O O O O

O d1 O O d3

q2 O O O O q4

m m
O O O O O O

O d2 O O d4
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Time step 6:

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

q1 O O O O q3

m m
O d1 O O d3 O

O O O O O

q2 O O O O q4

m m
O d2 O O d4 O

Time step 7:

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

q1 ← d1 O O d3 → q3

O O O O O

O O O O O

q2 ← d2 O O d4 → q4
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Time step 8:

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

H(q1) d1 O O d3 H(q3)

O O O O O

O O O O O

H(q2) d2 O O d4 H(q4)

Time step 9:

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

q1 ← d1 O O d3 → q3

O O O O O

O O O O O

q2 ← d2 O O d4 → q4
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Time step 10:

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

H(q1) d1 O O d3 H(q3)

O O O O O

O O O O O

H(q2) d2 O O d4 H(q4)

Now let |q1q2q3q4〉 denote the T |+〉 state and |d1d2d3d4〉 be the data qubit in Fig. 18.

Implementation of the T gate:

Time step 1:

O O O O O

O ⇔ q1 O O q3 ⇔ O

O O O O O

O O O O O

O ⇔ q2 O O q4 ⇔ O

O O O O O

O d1 O O d3

O O O O O

O O O O O

O d2 O O d4
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Time step 2:

O O O O O

q1 O O O O q3

m m
O O O O O O

O O O O O

q2 O O O O q4

m m
O O O O O O

O d1 O O d3

O O O O O

O O O O O

O d2 O O d4

Time step 3:

O O O O O

O O O O O

q1 O O O O q3

m m
O O O O O O

O O O O O

q2 O O O O q4

m m
O d1 O O d3 O

O O O O O

O O O O O

O d2 O O d4
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Time step 4:

O O O O O

O O O O O

O O O O O

q1 O O O O q3

m m
O O O O O O

O O O O O

q2 d1 O O d3 q4

m m
O O O O O O

O O O O O

O d2 O O d4

Time step 5:

O O O O O

O O O O O

O O O O O

O O O O O

q1 O O O O q3

m m
O O O O O O

O d1 O O d3

q2 O O O O q4

m m
O O O O O O

O d2 O O d4
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Time step 6:

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

q1 O O O O q3

m m
O d1 O O d3 O

O O O O O

q2 O O O O q4

m m
O d2 O O d4 O

Time step 7:

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

q1 → d1 O O d3 ← q3

O O O O O

O O O O O

q2 → d2 O O d4 ← q4
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Time step 8:

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

q1 MZ(d1) O O MZ(d3) q3

O O O O O

O O O O O

q2 MZ(d2) O O MZ(d4) q4

Time step 9:

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

O O O O O

q1 ⇔ d1 O O d3 ⇔ q3

O O O O O

O O O O O

q2 ⇔ d2 O O d4 ⇔ q4

Then an S gate is applied.
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18 Preparation of a logical state of the Knill’s post-selection scheme at the top

level

Recall that the tile of the Steane code is a 6× 8 square lattice as follows:

O O O O O O O O

O d6 O d5 O d3 O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O d4 O d2 O d1 O d7

(Note that |q1〉 , |q2〉 , |q3〉 , |q4〉 , |q5〉 , |q6〉 , and |q7〉 in Fig. 24 are reordered as |d6〉 , |d7〉 ,
|d1〉 , |d5〉 , |d4〉 , |d2〉 , and |d3〉 ) Preparation of the logical state |0〉 of the concatenation of

Cmed and Cec:

Time step 1:

O O O O O O O O

O O O O O O O O

O O O O P|+〉(d6) P|0〉(d1) O O

O O O P|+〉(d5) P|0〉(d3) O O O

O O O P|0〉(d2) P|+〉(d7) O O O

O O O O O O O O

Time step 2:

O O O O O O O O

O O O O O O O O

O O O P|0〉(d4) d6 → d1 O O

O O O d5 d3 O O O
↓ ↑

O O O d2 d7 O O O

O O O O O O O O
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Time step 3:

O O O O O O O O

O O O O O O O O

O O O d4 ← d6 d1 O O

O O O d5 → d3 O O O

O O O d2 ← d7 O O O

O O O O O O O O

Time step 4:

O O O O O O O O

O O O O O O O O

O O O d4 d6 d1 O O
↑ ↓ m

O O O d5 d3 O O O

O O O d2 d7 ⇔ O O O

O O O O O O O O

Time step 5:

O O O O O O O O

O O O O O O O O
m

O O O ⇔ d4 d6 O O O

O O O d5 d3 d1 O O
↑

O O O d2 O d7 O O
m

O O O O O O O O
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Time step 6:

O O O O O O O O

O O O O ⇔ d6 O O O

O O ⇔ d4 O O O O O
m m

O O O d5 d3 d1 O O

O O O O O d7 ⇔ O O

O O O d2 O O O O

Time step 7:

O O O O O O O O

O O O ⇔ d6 O O O O
m

O d4 O d5 d3 O O O
m

O O O O O d1 O O
m

O O O O O O d7 ⇔ O

O O O d2 O O O O

Time step 8:

O O O O O O O O

O O ⇔ d6 O d3 ⇔ O O O
m

O O O d5 O O O O

O d4 O O O O O O
m

O O O O O d1 O d7

m m
O O O d2 O O O O
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Time step 9:

O O O O O O O O

O d6 O d5 O d3 O O

O O O O O O O O

O O O O O O O O

O d4 O O O O O O
m

O O O d2 O d1 O d7


